Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovations from the fields of bionics, marine biology and microbiology

Understanding nature and transferring its traits to technology is not only the objective of bionics, but also of marine biology and microbiology.

Bionics, marine biology or microbiology. Here you can find scientific reports and articles about achievements and developments in the fields of bionics, marine biology and microbiology. Technical research departments at many universities and institutes are examining and learning from nature and then collaborating with the fields of bionics, marine biology and microbiology. Although Arnold Gehlen once labeled humanity as a "flawed being" that had to create its own culture to survive nature's environment, we can be certain he had not yet considered the opportunities presented by bionics, marine biology and microbiology. Science is meanwhile using the traits of the flawed being to contemplate how to utilize bionics, marine biology and microbiology to copy animals, plants and the rest of the environment. Because nature features attributes such as the hardest and most durable materials and efficient energy production and conversion, it has become a treasure trove of knowledge for bionics, marine biology and microbiology. As a stand-alone branch of research, science can use bionics to demonstrate that nature is superior to humans in many aspects and that we still have a lot to learn from it, whether in macro or microbiology.

Bionics takes the leap from comics to research

The "Bionic Six" comic and animated television series revolved around a family who collaborated with a researcher to utilize the attributes of nature to combat those intent on destroying it. The "Bionic Six" acquired their power and speed through bionics. They knew how to take advantage of the physical forces of nature and were already advancing into the fields of marine biology and microbiology research. Today, bionics is a well-respected field of research that has little to do with children's entertainment. Bionics occupies itself with nature's "inventions" and works closely with the fields of marine biology and microbiology to transfer their attributes to the human culture. Bionics has already proved its worth in the fields of materials research and nano technology. Bionics and microbiology have also made progress in areas such as energy production and storage.

Marine biology and microbiology - two close partners

Marine biology has enjoyed new impetus over the past several years. Although researchers have long been occupied with both fields, marine biology and microbiology were thrust into the public spotlight no later than with the publication of "The Swarm", a novel by German author Frank Schätzing. Over the last year, marine biology and microbiology reports revealed that although scientists have unearthed a wealth of new discoveries in marine biology and microbiology, there remain thousands of undiscovered animal species in both areas. Microbiology is actually a vital part of marine biology since the ocean depths contain not only large animals, but also organisms that cannot be seen with the naked eye. And this is where microbiology comes into play. Marine biology and microbiology are engaged in examining the effects of currents, depths and temperatures on the development and propagation of organisms and animals. For this reason, marine biology and microbiology researchers are working to discover new animal species and organisms, all the while further expanding the depths of geography and science. When marine biology and microbiology come together with bionics, this can result in unimagined discoveries and thus the development of new methods that humans can implement for their own benefit and for the protection of the environment. The latest achievements in the fields of bionics, marine biology and microbiology can be found in innovations-report.

Life Sciences

Articles and reports from the Life Sciences area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Latest News:

Page anfang | 2272 | 2273 | 2274 | 2275 | 2276 | ende

Cells reprogram in 24 hours

Erasing molecular memory of parents could shed light on clones. Cells naturally wipe out the mark of their parents in 24 hours, say cloning experts. Exactly how may begin to explain the way that animal clones and stem cells are reprogrammed. Not all genes are born equal. In mammals, some genes are imprinted - cells switch on only the copy inherited from mum or dad, not both. This sex stamp must be erased and rewritten in sperm and egg cells, however, so they are correctly labelled as 19.04.2002 | nachricht Read more

Stressed intestine can give rise to food allergy

The intestines of mice which have been subjected to stress, overreact to certain nutritional substances. PhD biologist Annette van Kalkeren from the University of Amsterdam has investigated the relationship between stress and the occurrence of food allergies and various intestinal disorders. The biologist investigated the reaction of pieces of mouse intestine to egg albumin, a substance found in eggs. Just like humans, mice can become allergic to the substance. However, mice only become alle 19.04.2002 | nachricht Read more

New insect order found

Two cricket-like creatures establish new insect group. The first new order of insects to be discovered for more than 80 years has emerged from the mountains of Namibia. The order’s first official members are two creatures about 2 cm long that look a bit like a cross between a cricket and a stick insect 1 . The group, called Mantophasmatodea, joins the other 30 or so insect orders such as beetles, flies and termites. "If it was in mammals it’d be like 18.04.2002 | nachricht Read more

Enzymes find pastures greener

Chemists put biological catalysts to work in clean industrial solvents. In a move towards cleaner chemical processing, researchers in Spain and France have worked out how to use enzymes as catalysts using two ’green’ solvents: one to dissolve the enzyme, the other to dissolve the materials it transforms. In some industrial processes chemists have replaced polluting organic solvents, such as chlorine and benzene, with supercritical carbon dioxide. This is the liquid 17.04.2002 | nachricht Read more

Ants create united Europe

Invading insect empire stretches 6,000 kilometres. An invading empire has conquered Europe. One super-colony of South American ants, with millions of nests and billions of individuals, stretches 6,000 kilometres around the Mediterranean and Atlantic coasts, researchers have found. Every ant in the colony treats every other as its nest-mate - even though they may be quite unrelated. The nests have buried their differences to create the largest cooperative unit ever discovered 16.04.2002 | nachricht Read more

Bio-engineering of blood vessels

Blood vessel prostheses work best when the biochemical and mechanical properties match reality as much as possible and when they are made of biodegradable material. To this end tissue technologists grow natural vascular wall cells, endothelial cells, in a biodegradable tube made of collagen. According to Professor István Vermes tissue technologists are overly concerned with developing stem cells, necessary to build blood vessels, and not enough with the development of the vascular skeleton or scaffo 16.04.2002 | nachricht Read more

Better Smaller, But More

In the city, frogs do not feel as comfortable as in the wild nature because of dirty water, a lack of food, and dangers at every turn. That is why the life of frogs in urban areas is shorter. However, they do not leave these habitats, but adapt to them. Apparently, there are two ways to adapt: either become more tolerant or increase the number of progeny. Every spring from 1998 to 2001, Elena A. Severtseva and her colleagues from the Biological Faculty of the Moscow State University 15.04.2002 | nachricht Read more

Urine trouble

A crayfish’s urine scares off its enemies. A well-timed blast of urine is the key to winning a crayfish fight, say researchers. The chemical aggression intimidates opponents into backing down. Ecologist Thomas Breithaupt injected freshwater crayfish with a dye that made their urine glow green. He and his colleague Petra Eger staged fights between blindfolded crayfish ( Astacus leptodactylus ), to replicate the animals’ nocturnal habits1. The eventual 15.04.2002 | nachricht Read more

Would you like gene chips with your salad?

The first public release of plant gene chip information is being launched at the Society for Experimental Biology conference in Swansea on Friday 12th April. Scientists from the Nottingham Arabidopsis Stock Centre (NASC), part of a multi-million pound resource network, will announce a newly accessible plant gene chip database which is available through the internet. Unlike in GATTACA, where a drop of Ethan Hawke`s blood or an eyelash could tell you what genes he had, gene chips can tell you 12.04.2002 | nachricht Read more

Explaining Tsavo’s Maneless Man-Eaters

The phrase "king of the jungle" invariably conjures up the image of a majestic, tawny cat with a fluffy mane framing its face. But in fact not all male lions have big hair. In Kenya’s Tsavo National Park--famed for the man-eating lions that reportedly terrorized railroad workers there in the late 1800s--a number of males lack manes altogether. Exactly why this should be the case--or why any lions should have manes, for that matter--has been difficult to explain. To that end, the results of a new 12.04.2002 | nachricht Read more
Page anfang | 2272 | 2273 | 2274 | 2275 | 2276 | ende

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>