Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Weathering-resistant functional films for outdoor applications

07.04.2015

At SVC 2015 (25-30 April 2015, Santa Clara/USA, booth 1420), Fraunhofer FEP is presenting the barrier and transmission results of films that were exposed to all weather conditions for a year outdoors. The results are encouraging.

Flexible electronic components (e.g. thin film solar cells or bendable light sources and displays based on organic light-emitting diodes (OLEDs)) are opening up entirely new fields of application and design possibilities:


Weathering-resistant functional films

Fraunhofer FEP

flexible solar cells and diodes can be integrated into purses and clothing; bendable screens for mobile phones or curved televisions become possible; lightweight solar cells can convert light into energy on large areas of building facades or roofs of large industrial halls.

However, flexible elements must be well protected against environmental influences such as UV radiation and corrosive gases. They are encapsulated with glass or a coated film in order to remain functional.

Scientists at Fraunhofer FEP are working on surface treatment and coating of plastic films in order to achieve the required encapsulation properties. Very low water vapour and oxygen permeability as well as protection against UV light with simultaneously very high transparency for visible light have to be achieved. In addition, the encapsulation has to be resistant against scratches and other mechanical stresses.

Past research results in the field of encapsulation were focused on interior applications and temporary outdoor use, where the elements were not permanently exposed to wind and weather. Fraunhofer FEP in cooperation with the partner institutes Fraunhofer ISC Würzburg and Fraunhofer IVV Freising has now succeeded in developing encapsulation on the basis of weathering-resistant fluoropolymers.

An ETFE film – a material used for example for the facade of the Allianz Arena in Munich – was upgraded with what is known as a permeation barrier layer system to accomplish this. Dr. John Fahlteich, Project Manager for the coating of flexible substrates at Fraunhofer FEP, will present the results of the Flex25 research project funded by the Federal Ministry of Education and Research (FKZ 03V0224) at the SVC conference and introduce weathering-resistant encapsulation systems on ETFE film with water vapour permeation in the high barrier range as well as integrated UV protection.

Not only the protective effect but also light transmission through the film and the related efficiency of the encapsulated elements must be taken into account in the development of weathering-resistant functional films for outdoor applications. This is the development where FEP was able to make significant progress with a process for the optical antireflection coating of surfaces.

The process is based on plasma-supported nanostructuring of large surfaces which can be realised at low cost with roll-to-roll processing and is therefore also suited for extremely cost-sensitive photovoltaic applications. Transmission values of 96.3% were achieved on ETFE with antireflection coating on one side, and 98.7% with antireflection coating on both sides. A favourable side effect: the nanostructures also help reduce the accumulation of surface dirt. Current results for studies of nanostructured films and their outdoor applications will be presented by Cindy Steiner at SVC.

Through this work, Fraunhofer FEP is able to offer its customers tailor-made processes and systems for coating of weathering-resistant films, for example for use in flexible displays, functional lightweight construction roofs or tents or to develop these products in cooperation with them. “Perhaps the work that will be presented will one day help to produce electricity with the facade of the Allianz Arena in Munich or the roof of Gondwanaland at the Leipzig zoo,” says Dr. John Fahlteich, looking into the future.

Based on her successful work in the field of fluoropolymer nanostructuring, Cindy Steiner is supported by the Society of Vacuum Coaters (SVC) as a “Sponsored Student”.

The visitors of the SVC 2015 can inform themselves about the latest developments in the field of vacuum coatings at Fraunhofer FEP by attending the following presentations:

Dr. John Fahlteich:
Ultra-High Multi-Layer Barriers on Wheathering Stable Substrates for Outdoor Application
Session: “WebTech Roll-to-Roll Coatings for High-End Applications”
Thursday, 30 April 2015, 10 a.m.

Cindy Steiner:
Nanostructuring of ethylene tetrafluoroethylene films by a low pressure plasma treatment process
Session: “WebTech Roll-to-Roll Coatings for High-End Applications”
Thursday, 30 April 2015, 2:20 p.m.

Dr. Jens-Peter Heinß:
Substrate Cooling and Tempering during High-Rate-Vacuum Coating
Session: “Large Area Coatings”
Monday, 27 April 2015, 3:30 p.m.

Stephan Barth:
Adjustment of Plasma Properties in Magnetron Sputtering by Pulsed Powering in Mixed Unipolar and Bipolar Mode
Session: “High Power Impulse Magnetron Sputtering (HIPIMS)”
Monday, 27 April 2015, 3:20 p.m.

Tim Weichsel:
Novel Magnetron Sputtering ECR Ion Source – An Emerging Tool for the Production of High Current Metal Ion Beams and Large Area Surface Processing
Session: “Plasma Processing”
Wednesday, 29 April 2015, 9:20 a.m.

Dr. John Fahlteich:
Tutorial Course C-336: “Transparent Gas Permeation Barriers on flexible Substrate”
Sunday, 26 April 2015, 8:30 a.m. – 4.30 p.m.

Weitere Informationen:

http://s.fhg.de/JLB

Annett Arnold | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

More articles from Trade Fair News:

nachricht Fraunhofer HHI at Mobile World Congress with VR and 5G technologies
24.02.2017 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

nachricht MWC 2017: 5G Capital Berlin
24.02.2017 | FOKUS - Fraunhofer-Institut für Offene Kommunikationssysteme

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>