Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Variable glass coatings to stop condensation on windows

07.10.2014

Thin-film coatings impart new properties to glass in applications as diverse as window glazing, solar cells and touchscreens. With the Megatron® sputtering system, it is now possible for the first time to vary the materials in these coatings in any way and to produce entirely new coatings with improved surface quality. The researchers will be presenting the Megatron® at the glasstec trade fair in Düsseldorf from October 21 to 24 (Hall 15, Booth A33).

When it’s frosty outside and cozy and warm indoors, a little bit of heat always escapes through the windows. Triple glazing is intended to keep as much of the expensive heating energy inside the house as possible, but this solution also has its downside, which is most noticeable at nightfall and in the early hours of the morning.


The Megatron® enables the scientists at Fraunhofer IST to create new combinations of materials.

© Fraunhofer IST/Jan Benz


Simulated plasma discharge in a cutaway model of the Megatron®.

© Fraunhofer IST

The drop in outside temperature causes the outermost pane to cool down significantly overnight, and moisture in the air is deposited as condensation. The result is misty windows. A conductive coating on the outer pane could stop condensation by preventing the small quantity of heat that penetrates the outer pane from being radiated to the cold outdoor environment.

This coating must also be scratchproof to withstand the weathering effects of wind and weather. Indium tin oxide, a material used to coat touchscreens, offers these properties. But its one major disadvantage is cost: indium is very rare and therefore expensive. If triple-glazed windows were to be coated with this material, their already high price would climb even higher.

Megatron® offers fast route to the optimum coating

The Megatron® sputtering system, developed in-house by researchers at the Fraunhofer Institute for Surface Engineering and Thin Films IST in Braunschweig, opens the way to the development of entirely new coating systems – for applications of all kinds. In the case of triple glazing, the researchers have opted for a solution based on titanium oxide.

“Titanium is much cheaper than indium, but it isn’t conductive,” says IST group leader Dr. Volker Sittinger. “So we dope the titanium with niobium.” In other words, the researchers deliberately contaminate the coating material in order to make it conductive. But how much niobium is needed to optimize the glass pane’s anti-misting properties? Until now there was no easy way to answer this question – until the Megatron® came along. “Unlike conventional sputtering systems, the Megatron® allows us to vary the doping concentration to any required level. It also enables us to increase the coating rate and obtain a smoother surface,” says Sittinger.

Conventional sputtering processes involve bombarding a solid object such as an ingot of titanium, referred to as the target, with energy-rich ions in a vacuum chamber. These ions knock a number of titanium atoms out of the target material, which are deposited on the glass substrate in the form of a very thin film. The doping process normally requires the presence of niobium ions in the target material, but this also implies that the concentration of this element is defined from the outset. The Megatron® system developed by IST researchers takes a different approach. “In this case we have two separate targets, one made of titanium and the other of niobium. This gives us total freedom to define the doping concentration. We can vary it in any way we choose, and even produce gradients, i.e. progressively increase or decrease the concentration of dopant within the thickness of the film,” explains Sittinger. This method can be used, for example, to enhance the efficiency of solar cells.

Coatings based on new combinations of materials

The Megatron® also allows entirely new coatings to be created by combining materials in a film that cannot be mixed in the form of a target, and were therefore impossible to produce up to now. For instance, a combination of tungsten and titanium dioxide could be used to create self-cleaning surfaces for interior spaces. When UV light hits a film of pure titanium dioxide, it breaks down any organic particles found there. If the titanium dioxide film is doped with tungsten, the organic dirt particles are broken down and detached when exposed to natural daylight.

Before building the Megatron®, the scientists carried out simulations to answer questions such as: What is the best way to separate the gas systems of the two vacuum chambers containing the different targets? What baffles are required, and where should they be positioned? The simulations enabled Sittinger and his colleagues to find the appropriate solutions, and the software developed by the IST team is already being used by the R&D departments of industrial plant manufacturers. The researchers will be presenting the Megatron® itself at the glasstec trade fair in Düsseldorf from October 21 to 24 (Hall 15, Booth A33).

Dr. Volker Sittinger | Fraunhofer-Institute

Further reports about: Titanium coating concentration condensation dioxide glass ions materials particles titanium dioxide

More articles from Trade Fair News:

nachricht New Process Technology Unlocks Boost in Laser Productivity
18.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht OLED microdisplays as high-precision optical fingerprint sensors
09.05.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>