Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Targeted Infrared – Matched to the Task

05.08.2014

Infrared emitters for edges, corners and burrs of plastic components

Whether it’s a watering can or a steering wheel, plastic products need to function correctly for the user. Containers should not leak water at seams and vehicle passenger compartment fittings should have no sharp, protruding burrs.


Quartz glass infrared emitters can be precisely shaped to follow the contours of edges or burrs. Copyright Heraeus Noblelight 2014

Many plastic products must be deburred, others owe their final shape to rivets, welded seams or adhesives. Infrared emitters, which are matched precisely to the product edges can help here.  They can perform thermal processes such as welding, gluing and deburring efficiently and in a manner which can be automated. Heraeus Noblelight will be showing contoured infrared emitters at Fakuma, which takes place in Friedrichshafen in October. 

Infrared radiation heats plastic parts in a contact-free manner in a matter of seconds and is targeted at the surface to be heated. Shaped emitters direct infrared radiation precisely where it is needed. This is reinforced by reflectors, which are coated directly on the emitters so that the energy is focused precisely on a burr or a joint. As a result, the reject rate in the production of formed components can be significantly reduced. 

Contoured Infrared Emitters Are Used to Join and Deburr

By using contact-free infrared, plastic components can be joined without the need for additional adhesives or other additional materials. The infrared radiation melts a thin surface layer of two plastic components very quicklyand these can then be pressed together to form, say, a reservoir for windscreen wash or brake fluid. In contrast to contact welding with hot plates, there is no residual material on the heat source and heating takes place, repeatably, in seconds. 

Handles, housing parts, lids, intake pipes and covers are often injection molded in plastics. Unfortunately it is not always possible to prevent the occurrence of sharp-edged burrs, for example at the tool separation plane. With components of complex shape, the removal of burrs before subsequent processing or coating can be a very real requirement. Quartz glass infrared emitters can be shaped to follow edges or burrs, to precisely melt away the excess material without causing any damage to the work piece itself. Consequently, they are much better than many conventional techniques, which rely on special knives or the application of naked gas flames, which do not produce consistent results and cost time. 

Infrared modules are compact and can be easily integrated into the production process, even in retro-fit situations. As a result, infrared heating permits in-line de-burring and the plastic components can be immediately processed further. 

Infrared Heat Saves Energy

A principal advantage of infrared is that it is targeted heat. Heat is applied only where it is needed and only for as long as it is needed.

Infrared emitters are precisely matched to the production stage and they heat large surface as well as thin edges. Flexible designs mean that they can be matched to extremely complex work pieces. And, as infrared emitters are switched on and off in seconds, they are energy-efficient, they save time and allow significant reduction in production costs.

Heraeus Noblelight offers the complete spectrum of infrared radiation from near infrared (NIR) to medium wave carbon technology (CIR). We can also carry out tests on customer materials and advise on the selection of optimum emitters for specific processes. 

The Hanau-based precious metal and technology group Heraeus is a globally active family-run enterprise with a history of more than 160 years. We provide high-end solutions to our customers to lastingly strengthen their competitive position. Our areas of competence include precious metals, materials and technologies, sensors, biomaterials and medical devices, quartz glass and specialty light sources. In the financial year 2013, Heraeus achieved a revenue from the sale of products of €3.6 bn, while the revenue from precious metal trading was €13.5 bn. With about 12,500 employees in more than 110 companies world-wide, Heraeus is in a leading position on its global sales markets.

Heraeus Noblelight GmbH with its headquarters in Hanau and with subsidiaries in the USA, Great Britain, France, China and Australia, is one of the technology- and market-leaders in the production of specialist light sources and systems. In 2013, Heraeus Noblelight had an annual turnover of 138 Million € and employed 875 people worldwide. The organization develops, manufactures and markets infrared and ultraviolet emitters, systems and solutions for applications in industrial manufacture, environmental protection, medicine and cosmetics, research, development and analytical measurement techniques. 

For further information, please contact:

Technical:         Heraeus Noblelight GmbH

                        Reinhard-Heraeus-Ring 7

                        D-63801 Kleinostheim

                        Tel +49 6181/35-8545, Fax +49 6181/35-16 8545

                        E-Mail hng-infrared@heraeus.com

Press:               Dr. Marie-Luise Bopp

                        Heraeus Noblelight GmbH,

                        Abteilung Marketing/Werbung

                        Tel +49 6181/35-8547, Fax +49 6181/35-16 8547

                        E-Mail marie-luise.bopp@heraeus.com

                        www.heraeus-noblelight.com/infrared

Dr. Marie-Luise Bopp | Heraeus Noblelight GmbH

Further reports about: Noblelight heat heating materials parts plastic processes processing technologies

More articles from Trade Fair News:

nachricht High Resolution Laser Structuring of Thin Films at LOPEC 2017
21.03.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Open ecosystem for smart assistance systems
20.03.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>