Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Targeted Infrared – Matched to the Task

05.08.2014

Infrared emitters for edges, corners and burrs of plastic components

Whether it’s a watering can or a steering wheel, plastic products need to function correctly for the user. Containers should not leak water at seams and vehicle passenger compartment fittings should have no sharp, protruding burrs.


Quartz glass infrared emitters can be precisely shaped to follow the contours of edges or burrs. Copyright Heraeus Noblelight 2014

Many plastic products must be deburred, others owe their final shape to rivets, welded seams or adhesives. Infrared emitters, which are matched precisely to the product edges can help here.  They can perform thermal processes such as welding, gluing and deburring efficiently and in a manner which can be automated. Heraeus Noblelight will be showing contoured infrared emitters at Fakuma, which takes place in Friedrichshafen in October. 

Infrared radiation heats plastic parts in a contact-free manner in a matter of seconds and is targeted at the surface to be heated. Shaped emitters direct infrared radiation precisely where it is needed. This is reinforced by reflectors, which are coated directly on the emitters so that the energy is focused precisely on a burr or a joint. As a result, the reject rate in the production of formed components can be significantly reduced. 

Contoured Infrared Emitters Are Used to Join and Deburr

By using contact-free infrared, plastic components can be joined without the need for additional adhesives or other additional materials. The infrared radiation melts a thin surface layer of two plastic components very quicklyand these can then be pressed together to form, say, a reservoir for windscreen wash or brake fluid. In contrast to contact welding with hot plates, there is no residual material on the heat source and heating takes place, repeatably, in seconds. 

Handles, housing parts, lids, intake pipes and covers are often injection molded in plastics. Unfortunately it is not always possible to prevent the occurrence of sharp-edged burrs, for example at the tool separation plane. With components of complex shape, the removal of burrs before subsequent processing or coating can be a very real requirement. Quartz glass infrared emitters can be shaped to follow edges or burrs, to precisely melt away the excess material without causing any damage to the work piece itself. Consequently, they are much better than many conventional techniques, which rely on special knives or the application of naked gas flames, which do not produce consistent results and cost time. 

Infrared modules are compact and can be easily integrated into the production process, even in retro-fit situations. As a result, infrared heating permits in-line de-burring and the plastic components can be immediately processed further. 

Infrared Heat Saves Energy

A principal advantage of infrared is that it is targeted heat. Heat is applied only where it is needed and only for as long as it is needed.

Infrared emitters are precisely matched to the production stage and they heat large surface as well as thin edges. Flexible designs mean that they can be matched to extremely complex work pieces. And, as infrared emitters are switched on and off in seconds, they are energy-efficient, they save time and allow significant reduction in production costs.

Heraeus Noblelight offers the complete spectrum of infrared radiation from near infrared (NIR) to medium wave carbon technology (CIR). We can also carry out tests on customer materials and advise on the selection of optimum emitters for specific processes. 

The Hanau-based precious metal and technology group Heraeus is a globally active family-run enterprise with a history of more than 160 years. We provide high-end solutions to our customers to lastingly strengthen their competitive position. Our areas of competence include precious metals, materials and technologies, sensors, biomaterials and medical devices, quartz glass and specialty light sources. In the financial year 2013, Heraeus achieved a revenue from the sale of products of €3.6 bn, while the revenue from precious metal trading was €13.5 bn. With about 12,500 employees in more than 110 companies world-wide, Heraeus is in a leading position on its global sales markets.

Heraeus Noblelight GmbH with its headquarters in Hanau and with subsidiaries in the USA, Great Britain, France, China and Australia, is one of the technology- and market-leaders in the production of specialist light sources and systems. In 2013, Heraeus Noblelight had an annual turnover of 138 Million € and employed 875 people worldwide. The organization develops, manufactures and markets infrared and ultraviolet emitters, systems and solutions for applications in industrial manufacture, environmental protection, medicine and cosmetics, research, development and analytical measurement techniques. 

For further information, please contact:

Technical:         Heraeus Noblelight GmbH

                        Reinhard-Heraeus-Ring 7

                        D-63801 Kleinostheim

                        Tel +49 6181/35-8545, Fax +49 6181/35-16 8545

                        E-Mail hng-infrared@heraeus.com

Press:               Dr. Marie-Luise Bopp

                        Heraeus Noblelight GmbH,

                        Abteilung Marketing/Werbung

                        Tel +49 6181/35-8547, Fax +49 6181/35-16 8547

                        E-Mail marie-luise.bopp@heraeus.com

                        www.heraeus-noblelight.com/infrared

Dr. Marie-Luise Bopp | Heraeus Noblelight GmbH

Further reports about: Noblelight heat heating materials parts plastic processes processing technologies

More articles from Trade Fair News:

nachricht Lasers are the key to mastering challenges in lightweight construction
29.05.2015 | Fraunhofer-Institut für Lasertechnik ILT

nachricht We will find “the fly in the ointment” and show it to you
20.05.2015 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lasers are the key to mastering challenges in lightweight construction

Many joining and cutting processes are possible only with lasers. New technologies make it possible to manufacture metal components with hollow structures that are significantly lighter and yet just as stable as solid components. In addition, lasers can be used to combine various lightweight construction materials and steels with each other. The Fraunhofer Institute for Laser Technology ILT in Aachen is presenting a range of such solutions at the LASER World of Photonics trade fair from June 22 to 25, 2015 in Munich, Germany, (Hall A3, Stand 121).

Lightweight construction materials are popular: aluminum is used in the bodywork of cars, for example, and aircraft fuselages already consist in large part of...

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Quasi-sexual gene transfer drives genetic diversity of hot spring bacteria

29.05.2015 | Life Sciences

First Eastern Pacific tropical depression runs ahead of dawn

29.05.2015 | Earth Sciences

Donuts, math, and superdense teleportation of quantum information

29.05.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>