Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Targeted Infrared – Matched to the Task


Infrared emitters for edges, corners and burrs of plastic components

Whether it’s a watering can or a steering wheel, plastic products need to function correctly for the user. Containers should not leak water at seams and vehicle passenger compartment fittings should have no sharp, protruding burrs.

Quartz glass infrared emitters can be precisely shaped to follow the contours of edges or burrs. Copyright Heraeus Noblelight 2014

Many plastic products must be deburred, others owe their final shape to rivets, welded seams or adhesives. Infrared emitters, which are matched precisely to the product edges can help here.  They can perform thermal processes such as welding, gluing and deburring efficiently and in a manner which can be automated. Heraeus Noblelight will be showing contoured infrared emitters at Fakuma, which takes place in Friedrichshafen in October. 

Infrared radiation heats plastic parts in a contact-free manner in a matter of seconds and is targeted at the surface to be heated. Shaped emitters direct infrared radiation precisely where it is needed. This is reinforced by reflectors, which are coated directly on the emitters so that the energy is focused precisely on a burr or a joint. As a result, the reject rate in the production of formed components can be significantly reduced. 

Contoured Infrared Emitters Are Used to Join and Deburr

By using contact-free infrared, plastic components can be joined without the need for additional adhesives or other additional materials. The infrared radiation melts a thin surface layer of two plastic components very quicklyand these can then be pressed together to form, say, a reservoir for windscreen wash or brake fluid. In contrast to contact welding with hot plates, there is no residual material on the heat source and heating takes place, repeatably, in seconds. 

Handles, housing parts, lids, intake pipes and covers are often injection molded in plastics. Unfortunately it is not always possible to prevent the occurrence of sharp-edged burrs, for example at the tool separation plane. With components of complex shape, the removal of burrs before subsequent processing or coating can be a very real requirement. Quartz glass infrared emitters can be shaped to follow edges or burrs, to precisely melt away the excess material without causing any damage to the work piece itself. Consequently, they are much better than many conventional techniques, which rely on special knives or the application of naked gas flames, which do not produce consistent results and cost time. 

Infrared modules are compact and can be easily integrated into the production process, even in retro-fit situations. As a result, infrared heating permits in-line de-burring and the plastic components can be immediately processed further. 

Infrared Heat Saves Energy

A principal advantage of infrared is that it is targeted heat. Heat is applied only where it is needed and only for as long as it is needed.

Infrared emitters are precisely matched to the production stage and they heat large surface as well as thin edges. Flexible designs mean that they can be matched to extremely complex work pieces. And, as infrared emitters are switched on and off in seconds, they are energy-efficient, they save time and allow significant reduction in production costs.

Heraeus Noblelight offers the complete spectrum of infrared radiation from near infrared (NIR) to medium wave carbon technology (CIR). We can also carry out tests on customer materials and advise on the selection of optimum emitters for specific processes. 

The Hanau-based precious metal and technology group Heraeus is a globally active family-run enterprise with a history of more than 160 years. We provide high-end solutions to our customers to lastingly strengthen their competitive position. Our areas of competence include precious metals, materials and technologies, sensors, biomaterials and medical devices, quartz glass and specialty light sources. In the financial year 2013, Heraeus achieved a revenue from the sale of products of €3.6 bn, while the revenue from precious metal trading was €13.5 bn. With about 12,500 employees in more than 110 companies world-wide, Heraeus is in a leading position on its global sales markets.

Heraeus Noblelight GmbH with its headquarters in Hanau and with subsidiaries in the USA, Great Britain, France, China and Australia, is one of the technology- and market-leaders in the production of specialist light sources and systems. In 2013, Heraeus Noblelight had an annual turnover of 138 Million € and employed 875 people worldwide. The organization develops, manufactures and markets infrared and ultraviolet emitters, systems and solutions for applications in industrial manufacture, environmental protection, medicine and cosmetics, research, development and analytical measurement techniques. 

For further information, please contact:

Technical:         Heraeus Noblelight GmbH

                        Reinhard-Heraeus-Ring 7

                        D-63801 Kleinostheim

                        Tel +49 6181/35-8545, Fax +49 6181/35-16 8545


Press:               Dr. Marie-Luise Bopp

                        Heraeus Noblelight GmbH,

                        Abteilung Marketing/Werbung

                        Tel +49 6181/35-8547, Fax +49 6181/35-16 8547



Dr. Marie-Luise Bopp | Heraeus Noblelight GmbH

Further reports about: Noblelight heat heating materials parts plastic processes processing technologies

More articles from Trade Fair News:

nachricht Creating living spaces for people: The »Fraunhofer CityLaboratory« at BAU 2017
14.10.2016 | Fraunhofer-Gesellschaft

nachricht Reducing Weight through Laser-assisted Material Processing in Automobile Construction
13.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>