Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stronger and lighter: laser-treated steel for the automotive industry

05.10.2012
A new technique for the local heat treatment of high-strength steels softens the material in a limited area, thus increasing the local formability of components. Automakers, for instance, can reduce weight using stronger steels with lower metal thicknesses without impairing the function of the parts.
At this year’s EuroBlech from October 23 to 27, 2012 in Hannover, the Fraunhofer Institute for Laser Technology ILT will be presenting heat treated parts e.g. a B-pillar (Hall 11, Booth B06).

Automakers in general are looking to reduce weight: every kilogram saved reduces fuel consumption and makes the vehicle more dynamic. To this end, long-standing development work has focused on new materials and new processing techniques that reduce costs and material usage in areas such as the body-in-white. Tailored blanks represented a major advance in this respect, paving the way for sheet metal with locally tailored properties.

A consortium made up of automakers, steel producers, a toolmaker, a laser manufacturer, and three research institutes has now adopted an entirely new approach. With funding from the German Federal Ministry of Education and Research (BMBF), they have developed a technique for locally softening sheet metal using heat input as part of the LOKWAB project. The aim was to produce local, defined softening of high-strength steels. The newly developed technique now allows the material to be treated using the laser so that it can be deep-drawn much further at the modified points without cracks developing. Galvanized sheet metal can also be treated without impairing corrosion protection.In addition, the heat treatment can also be used on press-hardened components in order to improve joinability using spot welding.

Process

Extensive tests and simulations were used to determine optimum process parameters for the laser heat treatment of various steels. A fiber-coupled 10 kW high-power diode laser was used, which projects a rectangular beam with a width of up to 90 mm onto the workpiece using a special optic. Large areas can therefore be softened in a single pass; the zoom optic enables the beam profile to be adjusted. Temperature monitoring in coaxial alignment with the laser beam makes it possible to control the heat treatment.

Application involving B-pillar

As part of the tests, locally laser-treated sheet metal was also formed into B-pillars. The heat treatment enabled the ultra-hard steel grade MS-W1200 to be used. In the crash test, this B-pillar proved clearly superior to one made from high-strength steel with the same thickness (CP-W800).
View of the process chain

The newly developed technique paves the way for material and component-tailored solutions for local laser heat treatment of sheet metals above and beyond softening (tempering, recrystallization, hardening). Graduated properties can also be produced across the sheet metal thickness. In addition to the purely technical development, the commercial aspects of the technique were also analyzed across the entire manufacturing process chain. In the case of small softening areas, the laser technique proved superior to conventional techniques, especially where flexibility is required.

For further information

Dr. Andreas Weisheit
Head of the Group Cladding and Heat Treatment
Phone +49 241 8906-403
andreas.weisheit@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen, Germany
Dipl.-Ing. Georg Bergweiler
Group Cladding and Heat Treatment
Phone +49 241 8906-602
georg.bergweiler@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen, Germany

Axel Bauer | Fraunhofer-Institut
Further information:
http://www.ilt.fraunhofer.de

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fast and Accurate 3-D Imaging Technique to Track Optically-Trapped Particles

KAIST researchers published an article on the development of a novel technique to precisely track the 3-D positions of optically-trapped particles having complicated geometry in high speed in the April 2015 issue of Optica.

Daejeon, Republic of Korea, April 23, 2015--Optical tweezers have been used as an invaluable tool for exerting micro-scale force on microscopic particles and...

Im Focus: NOAA, Tulane identify second possible specimen of 'pocket shark' ever found

Pocket sharks are among the world's rarest finds

A very small and rare species of shark is swimming its way through scientific literature. But don't worry, the chances of this inches-long vertebrate biting...

Im Focus: Drexel materials scientists putting a new spin on computing memory

Ever since computers have been small enough to be fixtures on desks and laps, their central processing has functioned something like an atomic Etch A Sketch, with electromagnetic fields pushing data bits into place to encode data.

Unfortunately, the same drawbacks and perils of the mechanical sketch board have been just as pervasive in computing: making a change often requires starting...

Im Focus: Exploding stars help to understand thunderclouds on Earth

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was discovered, more or less by coincidence, that cosmic rays provide suitable probes to measure electric fields within thunderclouds. This surprising finding is published in Physical Review Letters on April 24th. The measurements were performed with the LOFAR radio telescope located in the Netherlands.

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was...

Im Focus: On the trail of a trace gas

Max Planck researcher Buhalqem Mamtimin determines how much nitrogen oxide is released into the atmosphere from agriculturally used oases.

In order to make statements about current and future air pollution, scientists use models which simulate the Earth’s atmosphere. A lot of information such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL Energy Conference on May 11/12, 2015: Students Discuss about Decentralized Energy

23.04.2015 | Event News

“Developing our cities, preserving our planet”: Nobel Laureates gather for the first time in Asia

23.04.2015 | Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

 
Latest News

Electrons Move Like Light in Three-Dimensional Solid

24.04.2015 | Materials Sciences

Connecting Three Atomic Layers Puts Semiconducting Science on Its Edge

24.04.2015 | Materials Sciences

Understanding the Body’s Response to Worms and Allergies

24.04.2015 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>