Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stronger and lighter: laser-treated steel for the automotive industry

05.10.2012
A new technique for the local heat treatment of high-strength steels softens the material in a limited area, thus increasing the local formability of components. Automakers, for instance, can reduce weight using stronger steels with lower metal thicknesses without impairing the function of the parts.
At this year’s EuroBlech from October 23 to 27, 2012 in Hannover, the Fraunhofer Institute for Laser Technology ILT will be presenting heat treated parts e.g. a B-pillar (Hall 11, Booth B06).

Automakers in general are looking to reduce weight: every kilogram saved reduces fuel consumption and makes the vehicle more dynamic. To this end, long-standing development work has focused on new materials and new processing techniques that reduce costs and material usage in areas such as the body-in-white. Tailored blanks represented a major advance in this respect, paving the way for sheet metal with locally tailored properties.

A consortium made up of automakers, steel producers, a toolmaker, a laser manufacturer, and three research institutes has now adopted an entirely new approach. With funding from the German Federal Ministry of Education and Research (BMBF), they have developed a technique for locally softening sheet metal using heat input as part of the LOKWAB project. The aim was to produce local, defined softening of high-strength steels. The newly developed technique now allows the material to be treated using the laser so that it can be deep-drawn much further at the modified points without cracks developing. Galvanized sheet metal can also be treated without impairing corrosion protection.In addition, the heat treatment can also be used on press-hardened components in order to improve joinability using spot welding.

Process

Extensive tests and simulations were used to determine optimum process parameters for the laser heat treatment of various steels. A fiber-coupled 10 kW high-power diode laser was used, which projects a rectangular beam with a width of up to 90 mm onto the workpiece using a special optic. Large areas can therefore be softened in a single pass; the zoom optic enables the beam profile to be adjusted. Temperature monitoring in coaxial alignment with the laser beam makes it possible to control the heat treatment.

Application involving B-pillar

As part of the tests, locally laser-treated sheet metal was also formed into B-pillars. The heat treatment enabled the ultra-hard steel grade MS-W1200 to be used. In the crash test, this B-pillar proved clearly superior to one made from high-strength steel with the same thickness (CP-W800).
View of the process chain

The newly developed technique paves the way for material and component-tailored solutions for local laser heat treatment of sheet metals above and beyond softening (tempering, recrystallization, hardening). Graduated properties can also be produced across the sheet metal thickness. In addition to the purely technical development, the commercial aspects of the technique were also analyzed across the entire manufacturing process chain. In the case of small softening areas, the laser technique proved superior to conventional techniques, especially where flexibility is required.

For further information

Dr. Andreas Weisheit
Head of the Group Cladding and Heat Treatment
Phone +49 241 8906-403
andreas.weisheit@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen, Germany
Dipl.-Ing. Georg Bergweiler
Group Cladding and Heat Treatment
Phone +49 241 8906-602
georg.bergweiler@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen, Germany

Axel Bauer | Fraunhofer-Institut
Further information:
http://www.ilt.fraunhofer.de

More articles from Trade Fair News:

nachricht COMPAMED 2016 connected medical devices and people
23.11.2016 | IVAM Fachverband für Mikrotechnik

nachricht Successfully transferring Industrie 4.0 into reality
21.11.2016 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Speed data for the brain’s navigation system

06.12.2016 | Health and Medicine

What happens in the cell nucleus after fertilization

06.12.2016 | Life Sciences

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>