Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New standard HEVC encodes films more efficiently

24.08.2012
Television resolution is constantly improving – and this must go hand-in-hand with transmitting the data more efficiently.

Reputable manufacturers of televisions, computers and mobile telephones, working jointly with Fraunhofer researchers, are developing a new standard for data transmission: “High Efficiency Video Coding”, or HEVC for short. This video codec will be unveiled in Amsterdam at the IBC trade show, from September 7 - 11, 2012 (Hall 8, Booth B80).

The opening ceremonies for the Olympic Games captivated countless viewers all over the world in front of their televisions, astounding them with a gigantic show. Relatively few people were able to have a live experience of the spectacle at the London stadium. Still, some of the fans watching the show felt as if they were there live, even though they were only sitting in front of a large cinema screen. That’s because a few movie theaters showed the opening ceremonies in 8K-resolution, which corresponds to 33 megapixels.

The resolution on home televisions will soon be enhanced even further, conveying the feeling of being right in the middle of the action, instead of just watching from the sidelines. Indeed, the successor to the full HD television set is already penetrating the market: the 4K display, also called 2160p format. These televisions have four times as many pixels as the TVs in our living rooms today. Still, the continuously growing number of pixels must also be fed with the matching content, so that the capabilities of the high resolution television can also be utilized. But to do so has always been tied to immense costs, until recently, and therefore was only considered for major events, like the Olympic Games.

The previous standard for encoding data and sending it from the broadcaster to the home television set is known as H.264/MPEG-4 AVC. Theoretically, it has certainly been up to handling the mass of data; however practically, the broadcasting of higher resolution entails substantial costs: because an additional channel is needed for television broadcasts, and for Internet transmission, the server needs a wider bandwidth. A majority of the reputable electronics manufacturers have now joined forces to develop a new broadcasting standard together: HEVC, short for "High Efficiency Video Coding." The labs at the Fraunhofer Heinrich-Hertz-Institute HHI in Berlin, which played a critical role in the engineering of the H.264 predecessor standard, also made a substantial contribution to this new standard.

Twice as efficient as H.264
The advantage of HEVC: The standard requires half the bandwidth for high quality video transmission. But how is it being done? "Parts of H.264 were subsumed and optimized," explains Dr. Thomas Schierl, group manager of multimedia communications at HHI. "One example is the block size: whereas H.264 subdivides the transmission image into blocks of 16 by 16 pixels, HEVC instead carves the image into blocks of varying sizes with up to 64 by 64 pixels. These larger blocks can be encoded considerably more efficiently." If an object is seen in the image that moves to the side, then this movement occurs smoothly. The standards establish the movement data for each block - data that is ordinarily transmitted once per block. Because the blocks in HEVC are substantially larger than in H.264, correspondingly less movement data are needed.

Compared to H.264, since the computational effort for the higher coding efficiency increases sharply to encode or decode the images, HEVC in the standard design allows computer units to work parallel with each other. Either the image is separated out into several parts, known as tiles, whereupon each processor works on one of them, or in the wave front method, where the processors each handle one block of lines in the image. These methods allow encoder manufacturers to get implementations and products to market rapidly.

The development is scheduled for completion in January 2013. Thereafter, new televisions, smartphones and PC units will presumably contain decoders that convert data – encoded with HEVC – into high-resolution television images. The HEVC standard for 3D movies should follow in one to two years. HEVC will be presented at the IBC in Amsterdam from September 7-11, 2012 in Hall 8, Booth B80. Visitors can watch a full HD film on an HD television being converted live by the HEVC decoder into high-resolution television pictures. They can change movies, pause playback, fast forward and also rewind.

Standard for video telephony and video streaming as well
The new standard will deliver benefits to video telephony as well. It too, was hitherto largely based on H.264. With HEVC, the image quality can be increased substantially at the same data rate. Likewise, the transmission can be adapted for web video-streaming. MPEG-DASH, a transport format for multimedia streaming, currently enables viewers to watch judder-free videos via the Internet. Today it allows the transport of H.264-encoded contents as well as other standards. The researchers are planning to extend DASH by April 2013 in such a manner that it can also transmit HEVC-encoded videos.

Dr.-Ing. Thomas Schierl | EurekAlert!
Further information:
http://www.fraunhofer.de/en/press/research-news/2012/august/new-standard-hevc-encodes-films-more-efficiently.html

Further reports about: HEVC HHI IBC Olympic Video energy efficiency mobile telephone online game transmitting the data

More articles from Trade Fair News:

nachricht Fraunhofer HHI with latest VR technologies at NAB in Las Vegas
24.04.2017 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

nachricht Kiel nano research at the Hannover Messe
21.04.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

Two-dimensional melting of hard spheres experimentally unravelled after 60 years

24.04.2017 | Life Sciences

Molecular libraries for organic light-emitting diodes

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>