Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart materials for high-tech products

14.03.2011
The droning of a car driving along the highway can be nerve-racking.

Often, a driver cannot understand the passengers in the rear seat, not to mention the pianissimo on the car stereo. Actually, though, there are ways to drive this disruptive vibration out of the car.

This is possible thanks to "smart materials" – intelligent materials that can tailor their own condition to changing situations with highest speed. The possible applications are diverse and promising – not just for carmakers but also for mechanical engineering and the electronics industry.

This is why 11 Fraunhofer Institutes have joined forces to create the "Adaptronics Alliance," making new, "smart" solutions marketable.

Piezoceramic bearings to counteract car noise

Vibrations inside a moving car are just one example among many. Researchers use piezoceramics, a material that transforms electrical energy to motion and conversely dampens vibrations by converting them to electrical energy. They are currently using an upmarket passenger car to test piezoceramic bearings attached to the vehicle between the chassis and a metal frame positioned atop the chassis. Normally, rubber components are used for this purpose, but they are not ideal absorbers of annoying vibroacoustics. As a result, vibrations are audible in the car in the form of noise. The piezo bearings, on the other hand, are electromechanical energy transducer devices, being electronically controlled to counteract and neutralize these bothersome vibrations. The result is a quiet ride. In another project, researchers are taking the opposite approach. There, they are developing piezo components that convert the oscillations in a structure – such as within high-traffic bridges – to electrical energy. This energy

can be used to supply tiny – energy-autarchic sensors that can monitor the condition of the bridge and notify a control center of any damage.

Hard, viscous or watery at the touch of a button

Piezoceramics are not the only materials that can be "smart." An alternative material of interest to Fraunhofer researchers are "magneto-rheological fluids." These fluids contain tiny particles that align themselves to form fixed chains in a magnetic field. The fluid solidifies. Depending on the strength of the field, the fluid is hard, viscous or watery. The Alliance partners have used it to develop a safety clutch for machinery – for use in motor vehicle drives or milling machines. During operation, the fluid is solid. In this state, it creates a solid linkage between drive shaft and cutter head. Activating the emergency shutoff button switches off the magnetic field. The substance returns to its fluid state. The drive shaft spins freely. The cutter head comes to a standstill.

Specialists from different disciplines work together in the Alliance: Material developers, structural mechanics, electronics specialists and system engineers assemble all of the findings to create a coherent whole. With the current economic upturn, industry experts expect to see additional products based on smart materials on the market in the next two years. "The technology is ready. Work is moving forward on other exciting solutions – from mechanical engineering to the consumer-goods market," notes head of the Alliance Tobias Melz of the Fraunhofer Institute for Structural Durability and System Reliability LBF in Darmstadt. At the HANNOVER MESSE, at a joint stand with other Adaptronics partners, the Alliance is presenting a variety of developments – including a table with vibration-damping bearings, an aircraft component with piezoceramic monitoring sensors and an upmarket passenger car with a smart interior.

Tobias Melz | EurekAlert!
Further information:
http://www.lbf.fraunhofer.de

More articles from Trade Fair News:

nachricht Fraunhofer HHI at Mobile World Congress with VR and 5G technologies
24.02.2017 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

nachricht MWC 2017: 5G Capital Berlin
24.02.2017 | FOKUS - Fraunhofer-Institut für Offene Kommunikationssysteme

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>