Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Siemens study on biodrying: end-product can be used as fertilizer or fuel

13.09.2010
Industry requests for a versatile biosolids end-product that could be produced using less energy fueled Siemens Water Technologies to conduct a pilot study focusing on Mechanically Enhanced Biodrying (MEB) as a new application of the existing Siemens IPS composting technology.

The study illustrated how the IPS system serves a dual purpose by biodrying materials for fertilizer or fuel while using minimal energy expenditure, compared to conventional drying methods. It was determined that an automated, agitated bin composting technology could achieve 65 percent solids concentration (35 percent moisture) in biosolids by using only the finished dried product as the amendment.


An IPS composting system agitator similar to the technology used in the MEB pilot studies, where 65 percent solids concentration (35 percent moisture) was achieved in biosolids, using only the finished dried product as the amendment. Picture: Siemens AG

In the pilot study, the IPS Composting System was found to consistently dry to 65 percent solids with an in-feed mixture of at least 40 percent solids, comprised of dewatered cake (of at least 20 percent solids) and recycled dried product discharged from the IPS system (of at least 60 percent). Overall, the solids concentration increased an average of approximately one percent per day and as much as two percent per day in the agitated bin system when minimum in-feed conditions were met. Summer and winter studies focused on such variables as ambient air temperature, feedstock properties, turning frequency, bin retention time, and process aeration cycles.

The MEB process uses the biosolids’ own biological characteristics to heat the material and, in doing so, to evaporate some of the moisture. Aeration and agitation from the IPS equipment further enhance the biological process drying. The IPS biodrying process is more cost effective and energy efficient than thermal drying, and the resultant end-product can be used as fertilizer or feedstock for incineration. Creating a biosolids fuel product with an energy-conservative process makes MEB an ideal companion for conversion technologies. It was also found that applying similar MEB principles to biosolids composting addresses the challenge confronting plants when wood waste and other carbon-rich amendments are in short supply. Further research is looking at also possibly using the process before gasification.

A versatile system like the MEB that is capable of both composting and biodrying ensures WWTPs of a long-term flexible solution. On the one hand, some EU countries such as Austria, Denmark, Germany, the Netherlands, and Slovenia have stricter country-specific regulations regarding the agricultural use of biosolids by significantly limiting the maximum annual application of heavy metals. Where agricultural utilization is restricted, incineration is often selected as the sludge or biosolids management option. Therefore, biodrying or MEB would be an appropriate step before incineration. On the other hand, roughly 38 percent of EU countries land-apply treated biosolids, with France, Ireland, Spain, and the UK topping that list. Many of these countries have found composting to be a more socially acceptable, energy-efficient, and environmentally-friendly alternative to landfilling or incineration.

Besides municipal WWTPs, the IPS system is also applicable to other industries: the UK Department of Environment, Food and Rural Affairs (DEFRA) recently approved the IPS system, to be considered a "closed reactor" under Regulation (EC) 1774/2002 to compost catering wastes. The United Kingdom has composting guidelines that are more stringent than most of the other EU countries because of concerns over swine vesicular disease, foot-and-mouth disease, and other animal-related infections.

Contact USA:
Ms. Karole Colangelo
Corporate Public Relations Manager
Siemens Water Technologies Corp.
Hoffman Estates, IL
847-713-8458 phone
E-mail address karole.colangelo@siemens.com
The Siemens Industry Sector (Erlangen, Germany) is the worldwide leading supplier of environmentally friendly production, transportation, building and lighting technologies. With integrated automation technologies and comprehensive industry-specific solutions, Siemens increases the productivity, efficiency and flexibility of its customers in the fields of industry and infrastructure. The Sector consists of six divisions: Building Technologies, Drive Technologies, Industry Automation, Industry Solutions, Mobility und Osram. With around 207,000 employees worldwide (September 30), Siemens Industry achieved in fiscal year 2009 total sales of approximately €35 billion. http://www.siemens.com/industry
The Siemens Industry Solutions Division (Erlangen, Germany) is one of the world's leading solution and service providers for industrial and infrastructure facilities comprising the business activities of Siemens VAI Metals Technologies, Water Technologies and Industrial Technologies. Activities include engineering and installation, operation and service for the entire life cycle. A wide-ranging portfolio of environmental solutions helps industrial companies to use energy, water and equipment efficiently, reduce emissions and comply with environmental guidelines. With around 31,000 employees worldwide (September 30), Siemens Industry Solutions posted sales of €6.8 billion in fiscal year 2009.

Further information and downloads at: http://www.siemens.com/industry-solutions«

Stefanie Schiller | Siemens Industry
Further information:
http://www.siemens.com/water

More articles from Trade Fair News:

nachricht OLED production facility from a single source
29.03.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht High Resolution Laser Structuring of Thin Films at LOPEC 2017
21.03.2017 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>