Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Siemens presents first gas-insulated 320-kV switchgear for direct current transmission

26.08.2014
  • Compact gas-insulated switchgear requires 95 percent less space compared to air-insulated unit
  • Helps substantially reduce costs in the offshore realm
  • Cornerstone of the new direct current transmission portfolio based on gas-insulation technology

At the Cigré conference in Paris, Siemens today presented the first compact gas-insulated switchgear (GIS) for high-voltage direct current applications. Within the framework of the energy transition, high-voltage direct current (HVDC) transmission is gaining in significance as it allows low-loss transmission of large amounts of electricity over long distances.


In a typical configuration, the DC switchgear consists of the following main components: disconnectors, grounding switches, current and voltage measuring systems, cable and connection modules, and surge voltage protectors.

The new 320-kilovolt (kV) gas-insulated switchgear uses up to 95 percent less space compared to previous air-insulated units. When used on an offshore platform, the platform size can thus be decreased by approximately 10 percent.

The efficient HVDC transmission technology is necessary to bring wind power generated in the North Sea to load centers in southern Germany, for example. For this, 155 kV of alternating current (AC) from wind power is converted on a converter platform into 320 kV of low-loss direct current (DC) and then transmitted to land via submarine cables.

... more about:
»Energy »GIS »HVDC »conditions »electricity »processing

When transmitting electricity, the general rule is that the higher the voltage, the less power lost. Once on land, a converter station converts the direct current back into alternating current for further distribution.

The direct current switchgear that is part of the converter station currently uses air-insulated technology and thus requires a large amount of space. Because of air's relatively low insulating capability, the individual components can only be installed with a large amount of space between them and also between them and the earth potential.

The air-insulated DC switchgear that has been used on Siemens' converter platforms until now requires about 4,000 cubic meters of space, thereby requiring halls that are from two to ten meters high. However, space is a decisive cost factor both out at sea as well as in urban population centers. The innovative, compact DC CS (Direct Current Compact Switchgear) has the same capacity but needs only 200 cubic meters, thereby allowing space savings of up to 95 percent.

"With the 320-kV DC CS switchgear's market readiness, we have laid a cornerstone for the development of a completely new portfolio for efficient power transmission. Space-saving direct-current transmission solutions will continue to grow in significance in the future," explained Denis Imamovic, head of development for gas-insulated direct current transmission systems at Siemens. "We believe that the DC CS switchgear will establish itself as the standard for offshore converter platforms and thereby play a major role in decreasing costs for HVDC transmission grid connections."

In addition to the small size, the newly developed switchgear has other advantages. Its module-based design makes the DC CS especially flexible and simple to set up, and enables the use of cost-efficient shipping and transportation methods. Because all current-carrying parts are fully encapsulated, the system can also be reliably installed under demanding environmental conditions, such as on the high seas or near the coast, and it does not necessarily have to be housed in a building. Furthermore, the compact switchgear offers maximum reliability and low maintenance costs. The DC CS systems are manufactured in Siemens' Berlin switchgear production plant.

While gas-insulated, three-phase current switchgear has been part of Siemens' portfolio for decades, there had not been a corresponding gas-insulated technology for direct current applications to date. Since controlling an electric field under direct current is very complex, it had not been possible until now to build gas-insulated, compact DC switchgear for HVDC transmission applications. The development of a new isolator, which can permanently withstand the demands of high-voltage direct currents, made it possible to develop the first DC GIS switchgear. A pilot station based on 320-kV direct-current components that simulates the connection of an offshore wind farm to the grid is currently being run through a long-term test.

DC CS systems and the associated service are part of Siemens' Environmental Portfolio. Around 43 percent of its total revenue stems from green products and solutions. That makes Siemens one of the world's leading providers of eco-friendly technology.

For further information on Siemens@CIGRE, please see: www.energy.siemens.com/hq/en/energy-topics/tradeshows/cigre.htm

The Siemens Energy Sector is the world's leading supplier of a broad spectrum of products, services and solutions for power generation in thermal power plants and using renewables, power transmission in grids and for the extraction, processing and transport of oil and gas. In fiscal 2013 (ended September 30), the Energy Sector had revenues of EUR26.6 billion and received new orders totaling approximately EUR28.8 billion and posted a profit of approximately EUR2 billion. On September 30, 2013, the Energy Sector had a work force of approximately 83,500. Further information is available at: http://www.siemens.com/energy

Reference Number: EPT201408064e

Sabrina Martin | Siemens Energy Sector

Further reports about: Energy GIS HVDC conditions electricity processing

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Researchers release the brakes on the immune system

18.10.2017 | Health and Medicine

Separating methane and CO2 will become more efficient

18.10.2017 | Life Sciences

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>