Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sensor-controlled and flexibly assembled

27.03.2014

Flexible and accurate assembly processes: from 3 to 6 June 2014 the world of automation and mechatronics will be the focus of the Automatica international trade fair in Munich, where scientists from Fraunhofer IPA will demonstrate a sensor-controlled lightweight assembly robot. The goal is to increase the flexibility and cost-effectiveness of assembly processes by using sensors to assist component-specific work-holding fixtures. Workpiece variations and product tolerances can thus be reliably addressed while quality remains unchanged.

Whether for locating workpieces or controlling movements during production processes, fixtures have conventionally been an indispensable element of automation.

Such functions can be realized with maximum flexibility by new-type sensor-controlled robot systems.

Growing cost pressure, short product life cycles and high product diversity call for flexible and cost-effective assembly systems that can, when necessary, be quickly adapted to suit changed requirements. Scientists at Fraunhofer IPA have developed a sensor-controlled assembly process that makes it possible for workpieces to be flexibly positioned without the need for additional work-holding fixtures.

Also, 3D-printed tools ensure fast adaptation of the robot system to suit workpiece-specific geometries. “Our aim with this exhibit is to demonstrate that sensor-controlled robots are capable of coping with modern-day conditions at manual assembly workstations, such as chaotically arranged components,” says Martin Naumann, Group Leader in the Robot and Assistive Systems department at Fraunhofer IPA. “By replacing fixtures with sensors, we offer flexibility at low cost,” adds Naumann.

Exhibit at trade fair

Fraunhofer IPA’s stand at the trade fair will demonstrate sensor-controlled assembly in a robot cell with the KUKA LBR iiwa. “The cell will showcase the example of how to bolt a clutch onto the crankshaft of a chain saw.

However, the underlying concepts can equally well be applied to many other products and assembly processes. We’re highly interested in transferring the exhibited solution to new applications,” explains Naumann. The clutch for mounting on the crankshaft is placed within the robot’s workspace without the need for a separate work-holding fixture.

The robot moves to the determined location of the clutch and localizes the exact position of the component using an additional camera integrated in the robotic tool.

The mounting position of the clutch on the crankshaft is localized in the same way, which means that the engine block can also be flexibly positioned anywhere within the robot’s workspace. The clutch is slid and bolted onto the crankshaft with precision force control, which allows any errors during bolting on, such as tilting, to be detected and immediately corrected.

More at Automatica – 6th International Trade Fair for Automation and Mechatronics
3 to 6 June 2014
New Trade Fair Centre Munich
Hall A4 | Stand 530

Contact
Dipl.-Ing. Martin Naumann, phone +49 711 970-1291, martin.naumann@ipa.fraunhofer.de

Weitere Informationen:

http://www.automatica-munich.com
http://www.ipa.fraunhofer.de

Jörg Walz | Fraunhofer-Institut

More articles from Trade Fair News:

nachricht Bug-proof communication with entangled photons
22.06.2017 | Fraunhofer-Gesellschaft

nachricht LZH at the LASER World of Photonics 2017: Light for Innovation
16.06.2017 | Laser Zentrum Hannover e.V.

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>