Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Sensor-controlled and flexibly assembled


Flexible and accurate assembly processes: from 3 to 6 June 2014 the world of automation and mechatronics will be the focus of the Automatica international trade fair in Munich, where scientists from Fraunhofer IPA will demonstrate a sensor-controlled lightweight assembly robot. The goal is to increase the flexibility and cost-effectiveness of assembly processes by using sensors to assist component-specific work-holding fixtures. Workpiece variations and product tolerances can thus be reliably addressed while quality remains unchanged.

Whether for locating workpieces or controlling movements during production processes, fixtures have conventionally been an indispensable element of automation.

Such functions can be realized with maximum flexibility by new-type sensor-controlled robot systems.

Growing cost pressure, short product life cycles and high product diversity call for flexible and cost-effective assembly systems that can, when necessary, be quickly adapted to suit changed requirements. Scientists at Fraunhofer IPA have developed a sensor-controlled assembly process that makes it possible for workpieces to be flexibly positioned without the need for additional work-holding fixtures.

Also, 3D-printed tools ensure fast adaptation of the robot system to suit workpiece-specific geometries. “Our aim with this exhibit is to demonstrate that sensor-controlled robots are capable of coping with modern-day conditions at manual assembly workstations, such as chaotically arranged components,” says Martin Naumann, Group Leader in the Robot and Assistive Systems department at Fraunhofer IPA. “By replacing fixtures with sensors, we offer flexibility at low cost,” adds Naumann.

Exhibit at trade fair

Fraunhofer IPA’s stand at the trade fair will demonstrate sensor-controlled assembly in a robot cell with the KUKA LBR iiwa. “The cell will showcase the example of how to bolt a clutch onto the crankshaft of a chain saw.

However, the underlying concepts can equally well be applied to many other products and assembly processes. We’re highly interested in transferring the exhibited solution to new applications,” explains Naumann. The clutch for mounting on the crankshaft is placed within the robot’s workspace without the need for a separate work-holding fixture.

The robot moves to the determined location of the clutch and localizes the exact position of the component using an additional camera integrated in the robotic tool.

The mounting position of the clutch on the crankshaft is localized in the same way, which means that the engine block can also be flexibly positioned anywhere within the robot’s workspace. The clutch is slid and bolted onto the crankshaft with precision force control, which allows any errors during bolting on, such as tilting, to be detected and immediately corrected.

More at Automatica – 6th International Trade Fair for Automation and Mechatronics
3 to 6 June 2014
New Trade Fair Centre Munich
Hall A4 | Stand 530

Dipl.-Ing. Martin Naumann, phone +49 711 970-1291,

Weitere Informationen:

Jörg Walz | Fraunhofer-Institut

More articles from Trade Fair News:

nachricht Creating living spaces for people: The »Fraunhofer CityLaboratory« at BAU 2017
14.10.2016 | Fraunhofer-Gesellschaft

nachricht Reducing Weight through Laser-assisted Material Processing in Automobile Construction
13.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>