Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robots are coming to aircraft assembly

20.09.2011
Up to now, aircraft have been put together in huge assembly cells, but to build the necessary facilities is expensive and time-consuming.

That is why Fraunhofer researchers have come up with a flexible assembly-line concept that features robots working in the same way they do in automotive production. The developers are presenting their new manufacturing approach at the Composites Europe trade fair in Stuttgart in Hall 4, Booth D03. One of this future assembly line’s first elements can also be seen there: a versatile component gripper made of lightweight CFRP (carbon fiber reinforced plastic).


This modular, lightweight, carbon fiber reinforced plastic gripper is able to flexibly grasp and handle aircraft components. It was developed by the Fraunhofer Project Group Joining and Assembly FFM. (© Fraunhofer IFAM)

Aircraft parts are simply enormous. Individual fuselage segments alone can measure ten meters or more. But they need to be fitted together with the utmost precision. The maximum deviation from plan that aircraft manufacturers can tolerate is 0.2 millimeters – on components that weigh several metric tons. To position the giant parts accurately, manufacturers rely on massive production facilities known as assembly cells. These are huge gantries that move along the fuselage like container cranes on steel rails and massive concrete foundations, for instance bolting aluminum parts together. It takes a lot of money and effort to build this kind of assembly cell – and they need to be built from scratch for each new kind of aircraft, which pushes their production and construction costs even higher.

This state of affairs calls for automation concepts and facilities to make aircraft assembly – and in particular high-precision drilling, milling and adhesive bonding – simpler, more flexible and more economical in the future. And that is exactly what developers in the Fraunhofer Project Group Joining and Assembly FFM at the Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Bremen, are working on at the research center CFK Nord in Stade. Theirs is a totally new assembly philosophy: Aircraft will in future be machined – and their parts increasingly bonded together – by a host of small industrial robots, much as we see in today’s automotive sector. Dr. Dirk Niermann, head of the Fraunhofer FFM, and his team of developers have come up with a design for a suitable facility that would replace the common assembly cell: They envision fuselage segments, tail fin and wings sitting atop a kind of rolling assembly line and being carried past one-armed robots, akin to automotive production methods. These robots then work at various points on the parts in succession to bond, drill and mill them as they pass. Of course, a facility of this kind would still need to be tailored to each new aircraft type, but the installation costs incurred would be significantly lower.

At the Composites Europe 2011 trade fair from September 27 to 29 (Hall 4, Booth D03), the scientists from Stade will be presenting the first key element of their new assembly line: a gripper that can deal flexibly with various geometries of aircraft component. "Aircraft are made up of shells of varying curvatures, and a gripper system has to be able to adjust accordingly," says Niermann. This is done using configurable arrays of suction pads that sit on robust joints. The suction pads are mounted on a framework structure made of carbon fiber reinforced plastic that is both sturdy and considerably lighter than metal. Thanks to its low mass, industrial robots can position the gripper and the component with exceptional precision.

The gripper concept might seem only too simple, but in fact handling the components is a real challenge. Once they are put together, the dimensions of these large aircraft parts can deviate from plan by up to several millimeters as a consequence of their being fitted to the fuselage. Up to now, the fitting of these components into the fuselage has been painstakingly done by experienced technicians working on the assembly cell.

The parts are sometimes even compressed or bent slightly in order not to breach the overall 0.2 millimeter tolerance. In future, it will be up to the robots and the gripper to achieve this. "That’s why we’re developing a high-precision recognition system to measure the components exactly during assembly," says Niermann. This is combined with powerful software that takes fractions of a second to calculate the precise position in which the robot has to hold the workpiece to make everything fit together perfectly. However, there is one more challenge: Aluminum, the classic aircraft material, is increasingly being replaced by CFRP. But, unlike aluminum sheeting, CRFP components are unyielding during assembly, so they sometimes need to be assembled under tension.

While technicians have developed a feel for how much tension is permissible, which allows them to assemble these parts manually, robots don’t know how to do this yet. Nonetheless, Niermann and his colleagues are certain that they will have an initial demonstration facility up and running around three years from now. The gripper can already be seen at Composites Europe, and the Fraunhofer Project Group Joining and Assembly FFM is also presenting its entire robotic aircraft assembly concept there.

Sarah Ernst | EurekAlert!
Further information:
http://www.fraunhofer.de/en/press/research-news/2010-2011/21/aircraft-assembly-cells-gripper.jsp

More articles from Trade Fair News:

nachricht Innovative Infrared Emitters Optimize the Manufacture of Vehicle Interior Fittings Using Vacuum Lamination
01.08.2017 | Heraeus Noblelight GmbH

nachricht Bug-proof communication with entangled photons
22.06.2017 | Fraunhofer-Gesellschaft

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>