Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robots are coming to aircraft assembly

20.09.2011
Up to now, aircraft have been put together in huge assembly cells, but to build the necessary facilities is expensive and time-consuming.

That is why Fraunhofer researchers have come up with a flexible assembly-line concept that features robots working in the same way they do in automotive production. The developers are presenting their new manufacturing approach at the Composites Europe trade fair in Stuttgart in Hall 4, Booth D03. One of this future assembly line’s first elements can also be seen there: a versatile component gripper made of lightweight CFRP (carbon fiber reinforced plastic).


This modular, lightweight, carbon fiber reinforced plastic gripper is able to flexibly grasp and handle aircraft components. It was developed by the Fraunhofer Project Group Joining and Assembly FFM. (© Fraunhofer IFAM)

Aircraft parts are simply enormous. Individual fuselage segments alone can measure ten meters or more. But they need to be fitted together with the utmost precision. The maximum deviation from plan that aircraft manufacturers can tolerate is 0.2 millimeters – on components that weigh several metric tons. To position the giant parts accurately, manufacturers rely on massive production facilities known as assembly cells. These are huge gantries that move along the fuselage like container cranes on steel rails and massive concrete foundations, for instance bolting aluminum parts together. It takes a lot of money and effort to build this kind of assembly cell – and they need to be built from scratch for each new kind of aircraft, which pushes their production and construction costs even higher.

This state of affairs calls for automation concepts and facilities to make aircraft assembly – and in particular high-precision drilling, milling and adhesive bonding – simpler, more flexible and more economical in the future. And that is exactly what developers in the Fraunhofer Project Group Joining and Assembly FFM at the Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Bremen, are working on at the research center CFK Nord in Stade. Theirs is a totally new assembly philosophy: Aircraft will in future be machined – and their parts increasingly bonded together – by a host of small industrial robots, much as we see in today’s automotive sector. Dr. Dirk Niermann, head of the Fraunhofer FFM, and his team of developers have come up with a design for a suitable facility that would replace the common assembly cell: They envision fuselage segments, tail fin and wings sitting atop a kind of rolling assembly line and being carried past one-armed robots, akin to automotive production methods. These robots then work at various points on the parts in succession to bond, drill and mill them as they pass. Of course, a facility of this kind would still need to be tailored to each new aircraft type, but the installation costs incurred would be significantly lower.

At the Composites Europe 2011 trade fair from September 27 to 29 (Hall 4, Booth D03), the scientists from Stade will be presenting the first key element of their new assembly line: a gripper that can deal flexibly with various geometries of aircraft component. "Aircraft are made up of shells of varying curvatures, and a gripper system has to be able to adjust accordingly," says Niermann. This is done using configurable arrays of suction pads that sit on robust joints. The suction pads are mounted on a framework structure made of carbon fiber reinforced plastic that is both sturdy and considerably lighter than metal. Thanks to its low mass, industrial robots can position the gripper and the component with exceptional precision.

The gripper concept might seem only too simple, but in fact handling the components is a real challenge. Once they are put together, the dimensions of these large aircraft parts can deviate from plan by up to several millimeters as a consequence of their being fitted to the fuselage. Up to now, the fitting of these components into the fuselage has been painstakingly done by experienced technicians working on the assembly cell.

The parts are sometimes even compressed or bent slightly in order not to breach the overall 0.2 millimeter tolerance. In future, it will be up to the robots and the gripper to achieve this. "That’s why we’re developing a high-precision recognition system to measure the components exactly during assembly," says Niermann. This is combined with powerful software that takes fractions of a second to calculate the precise position in which the robot has to hold the workpiece to make everything fit together perfectly. However, there is one more challenge: Aluminum, the classic aircraft material, is increasingly being replaced by CFRP. But, unlike aluminum sheeting, CRFP components are unyielding during assembly, so they sometimes need to be assembled under tension.

While technicians have developed a feel for how much tension is permissible, which allows them to assemble these parts manually, robots don’t know how to do this yet. Nonetheless, Niermann and his colleagues are certain that they will have an initial demonstration facility up and running around three years from now. The gripper can already be seen at Composites Europe, and the Fraunhofer Project Group Joining and Assembly FFM is also presenting its entire robotic aircraft assembly concept there.

Sarah Ernst | EurekAlert!
Further information:
http://www.fraunhofer.de/en/press/research-news/2010-2011/21/aircraft-assembly-cells-gripper.jsp

More articles from Trade Fair News:

nachricht COMPAMED 2016 connected medical devices and people
23.11.2016 | IVAM Fachverband für Mikrotechnik

nachricht Successfully transferring Industrie 4.0 into reality
21.11.2016 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>