Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New gas sensors for monitoring carbon dioxide sinks - A world first presented at IFAT 2008

08.05.2008
A novel gas sensor system makes it possible to monitor large areas cost-effectively the first time. The patented gas sensor is based on the principle of diffusion, according to which certain gases pass through a membrane faster than others.

Using a tube-like sensor it is possible to measure an average gas concentration value over a certain distance without influencing or distorting conditions in the measuring environment. If such sensors are laid in a particular pattern, it is possible to calculate the concentration of a gas over an area. The measuring tube can therefore replace a large number of individual sensors, making it much cheaper than previous methods.

The sensor was developed at the Helmholtz Centre for Environmental Research (UFZ) and is being presented for the first time at the 15th International Trade Fair for Water – Sewage – Refuse - Recycling (IFAT), which is taking place from 5 to 9 May in Munich.

Potential fields of application for the membrane-based gas sensors ("MeGa") are environmental remediation and landfill monitoring. But in future the technology could also be used to monitor gas pipelines, the formation of hydrogen sulphide in waterbodies or the underground injection of carbon dioxide. The principle can also be used in liquids, so the probe is also useful for monitoring waterbodies, including groundwater, and for monitoring boreholes. The slimline construction of the borehole and waterbody probe means that it can be used in gauges. The (permanent) connection to the part above ground allows data capture/evaluation to take place while the probe is submerged. A device with these features has never previously been available anywhere in the world. Another potential field of application is process monitoring in water treatment or in the food industry, e.g. in breweries and dairies.

The researchers are hoping that in future their system can also contribute to more intelligent ventilation of indoor spaces. An excessive level of carbon dioxide leads to fatigue and health problems, while excessive ventilation means a waste of energy. In classrooms, lecture theatres of all kinds and in workplaces there are therefore recommendations for indoor air concentrations of 1000 and 3000 ppm. "Monitoring these indoor air concentrations has failed so far because of a lack of suitable, reasonably priced measuring methods linked to appropriate ventilation technology", explains Dr Detlef Lazik from the UFZ. "With our membrane-based gas sensors it is for instance possible to have decentralised ventilation using a ventilator that is controlled by a gas sensor. The ventilation is then simply switched on if an adjustable threshold value is exceeded." The same principle can be used for monitoring dangerous substances in buildings and facilities.

The Helmholtz Centre for Environmental Research (UFZ) will be represented at IFAT 2008, the specialist trade fair for water, sewage, refuse and recycling, in Munich from 5 to 9 May 2008. Experts at the UFZ stand (Stand 207) in Hall B1 will be providing information about managing contaminated sites and presenting the latest environmental technologies and new products. As well as MeGa, a membrane-based gas sensor for measuring carbon dioxide in waterbodies and in the soil, the UFZ will be displaying Carbo-Iron (a novel material for in situ remediation), RF-Heating (soil remediation through targeted heating) and Compartment Transfer (breaking down hazardous substances using semi-natural wetlands).

Further information from:

Dr Detlef Lazik
Helmholtz Centre for Environmental Research (UFZ)
Tel: +49 345 558 5209
and
Dr Jens Hagenau
Helmholtz Centre for Environmental Research (UFZ)
Tel: +49 345 558 5408
or from Tilo Arnhold (UFZ press office)
Telephone: +49 341 235 1269
Email: presse@ufz.de

Tilo Arnhold | UFZ Leipzig-Halle
Further information:
http://www.ufz.de/index.php?en=16708
http://www.ufz.de/index.php?en=16663
http://www.ufz.de/index.php?de=13963

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>