Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infrared Emitters help speed up components manufacture

28.03.2008
Today’s heating processes need to be carried out efficiently and in a targeted manner. Some components, such as electronic components and plastics, will not tolerate heat for very long. The development of more efficient heat sources has been driven because of the sustained pressure for faster production speeds and ever lower production costs.

This provides an ideal opportunity for infrared heat, which can transfer a great deal of energy in a short time to precisely where it is required. The production equipment, the ambient environment and the rest of the product can consequently remain relatively cool.


Heraeus Photo
Medium wave infrared emitters from Heraeus Noblelight carry out drying tasks much faster than a hot air oven. This increases production speed and saves energy.
Copyright Heraeus Noblelight 2007

Heraeus Noblelight is showing infrared emitters for the drying of coatings on stand D22 in Hall 4 at the O&S Exhibition in Stuttgart.

SSK Products in Telford, Great Britain, manufactures electrical sockets and switches, which are coated in a range of coloured paints or in metallised lacquer finishes. These must then be perfectly dried before final assembly, packaging and despatch.

Because of increasing demand for the company’s products, a new production line was installed and it was realised that the speed of the line was very much dictated by the speed of drying. After carrying out a series of tests, it was decided to incorporate an infrared system, as this was faster than the hot air alternative, required less space and was easier to control.

As a result, an infrared drying system from Heraeus Noblelight is now helping SSK Products Ltd to realise the full capacity of its new production line. In addition, the infrared system has proved to be extremely energy-saving, as, unlike the hot air oven, it needs be switched on only when direct heating is required. The new infrared system consists of two 18kW modules, each with nine 2kW medium wave emitters.

Heraeus Noblelight offers a whole range of infrared emitters, which heat plastics, paints and lacquers quickly and efficiently. Conventionally, lacquers and paints have been dried and cured using hot air ovens. More and more, the market requires increased production speeds, and these can often be achieved by using infrared drying. Modern infrared modules are so compact that they can easily be retrofitted into existing ovens or can complement existing ovens. An example is the infrared booster which can be located in front of a hot air oven to speed up the process.

For complicated components, hot air heating and infrared can be combined to advantage. The infrared emitters provide the direct heat while the heat from the hot air oven seeks out all hidden nooks and angles. Modern infrared emitters can be perfectly matched to product and process in terms of wavelength, power and emitter shape. In every case it is worthwhile to match the process and material exactly to the heating source, as this ensures that not only is the production speed increased but quality is also improved, reject rates are cut and costs are saved.

Heraeus Noblelight GmbH with its headquarters in Hanau and with subsidiaries in the USA, Great Britain, France, China, Australia and Puerto Rico, is one of the technology- and market-leaders in the production of specialist light sources. In 2006, Heraeus Noblelight had an annual turnover of 88 Million € and employed 651 people worldwide. The organisation develops, manufactures and markets infrared and ultraviolet emitters for applications in industrial manufacture, environmental protection, medicine and cosmetics, research, development and analytical laboratories.

Heraeus, the precious metals and technology group headquartered in Hanau, Germany, is a global, private company in the business segments of precious metals, sensors, dental and medical products, quartz glass and specialty lighting sources. With revenues of more than EUR 10 billion and more than 11,000 employees in over 100 companies, Heraeus has stood out for more than 155 years as one of the world’s leading companies involved in precious metals and materials technology.

Further Information:

Readers:
Heraeus Noblelight GmbH
Reinhard-Heraeus-Ring 7
D-63801 Kleinostheim
phone +49 6181/35-8545, fax +49 6181/35-16 8545
E-Mail hng-infrared@heraeus.com
Press:
Dr. Marie-Luise Bopp
Heraeus Noblelight GmbH,
phone +49 6181/35-8547, fax +49 6181/35-16 8547
E-Mail marie-luise.bopp@heraeus.com

Dr. Marie-Luise Bopp | Heraeus Noblelight GmbH
Further information:
http://www.heraeus-noblelight.com

More articles from Trade Fair News:

nachricht BAM@Hannover Messe: innovative 3D printing method for space flight
24.04.2018 | Bundesanstalt für Materialforschung und -prüfung (BAM)

nachricht Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018
23.04.2018 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Why we need erasable MRI scans

26.04.2018 | Medical Engineering

Balancing nuclear and renewable energy

26.04.2018 | Power and Electrical Engineering

Researchers 3-D print electronics and cells directly on skin

26.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>