Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Paint on Plastic Dries More Quickly with Infrared Emitters

Modern cars, computers and electronic equipment contain components, which are printed and then coated with a protective or a metallised lacquer.

Conventionally, these lacquers and coatings are dried or cured by means of hot air. Increasingly, the market requires faster production speeds, which, in many cases, can be achieved by means of infrared drying. A British manufacturer of key boards and keypads is drying its protective lacquer coatings in less than four minutes using infrared, compared with the previous 20minutes required by a hot air oven.

Medium wave infrared emitters from Heraeus Noblelight dry keypads much faster than a hot air oven. This increases quality and saves energy. Copyright Heraeus Noblelight 2007

Heraeus Noblelight will be showing emitters for lacquer drying on stand 3541, Hall 3, at PaintExpo in Karlsruhe.

Kestrel Injection Moulders in Great Britain produces keyboards and keypads for cars or for use in electronic equipment, computers or white goods. These pads are injection moulded plastic products and need to be printed and coated with a protective clear lacquer. Previously, the components had to be dried for around 20 minutes in a hot air oven. During this extended period, dust could settle on the product to adversely affect the quality.

An infrared oven from Heraeus Noblelight is now drying and curing the coatings on the keypads in less than 20% of the time required by the convection ovens.

With its 1.5m length and 1m height, the infrared oven fitted easily into the available space. It consists of two modules, each of 3 kW output and is fitted with medium wave infrared emitters, which in pre-installation trials had proved themselves as a successful and faster alternative to hot air.

Currently, the new ovens handle two different types of keypads. One type is coated with a water-based lacquer after manufacture, is pre-dried, printed and then finished with a clear protective lacquer. Other keypads do not require a pre-coating and can be immediately printed and coated with the protective lacquer.

Since the installation of the infrared ovens, the rejection rates have been significantly reduced. Naturally, this enormously reduces the time in which dust can fall on the keypad surfaces. In addition, the infrared system has also proved itself to be extremely energy-saving, as, in contrast to the convection ovens, it needs to be switched on only when heating is required.

Heraeus Noblelight offers a comprehensive range of infrared emitters to heat plastics, lacquers or coatings rapidly and efficiently. Infrared ovens are so compact that they can be easily retrofitted into existing production systems and layouts. This saves space, time and cost.

Heraeus Noblelight GmbH with its headquarters in Hanau and with subsidiaries in the USA, Great Britain, France, China, Australia and Puerto Rico, is one of the technology- and market-leaders in the production of specialist light sources. In 2006, Heraeus Noblelight had an annual turnover of 88 Million € and employed 651 people worldwide. The organisation develops, manufactures and markets infrared and ultraviolet emitters for applications in industrial manufacture, environmental protection, medicine and cosmetics, research, development and analytical laboratories.

Heraeus, the precious metals and technology group headquartered in Hanau, Germany, is a global, private company in the business segments of precious metals, sensors, dental and medical products, quartz glass and specialty lighting sources. With revenues of more than EUR 10 billion and more than 11,000 employees in over 100 companies, Heraeus has stood out for more than 155 years as one of the world’s leading companies involved in precious metals and materials technology.

Further Information:

Heraeus Noblelight GmbH
Reinhard-Heraeus-Ring 7
D-63801 Kleinostheim
phone +49 6181/35-8545, fax +49 6181/35-16 8545
Dr. Marie-Luise Bopp
Heraeus Noblelight GmbH,
phone +49 6181/35-8547, fax +49 6181/35-16 8547

Dr. Marie-Luise Bopp | Heraeus Noblelight GmbH
Further information:

More articles from Trade Fair News:

nachricht Creating living spaces for people: The »Fraunhofer CityLaboratory« at BAU 2017
14.10.2016 | Fraunhofer-Gesellschaft

nachricht Reducing Weight through Laser-assisted Material Processing in Automobile Construction
13.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>