Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Release agent free FRP component manufacture using FlexPLAS® release film – JEC Europe 2012 in Paris

21.03.2012
The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Germany, will present its work at JEC Europe 2012 in Paris (Hall 1, Booth H 64) from 27 to 29 March 2012. The focus will be on release agent free FRP manufacture using the newly developed FlexPLAS® release film.

In order to be able to manufacture large fiber reinforced plastic (FRP) components – such as those used for aircraft and wind turbine construction – which are free of release agents, researchers of Plasma Technology and Surfaces PLATO and experts in the Fraunhofer Project Group Joining and Assembly FFM at Fraunhofer IFAM have developed a deep-drawable FlexPLAS® release film.


Removal of the FlexPLAS® release film developed by Fraunhofer IFAM, Bremen, from a fiber composite component that was in-mold coated with a gel-coat. (© Fraunhofer IFAM)

This is an elastic polymer film with a flexible plasma-polymer release layer that allows easy removal of components from molds, even when stretched by 300 percent. The film can be applied using a special deep-drawing process without alteration of the tool design, and is suitable for both female and male molds.

The FlexPLAS® release film has already been used to manufacture large carbon fiber reinforced plastic (CFRP) components on a 1:1 scale, without using release agents, via a prepreg process at 180 °C in an autoclave. As will be able to be seen at Booth H 64 in Hall 1 at JEC 2012 in Paris, the resulting large components can then be coated without further pre-treatment. This is because the use of the release film allows clean removal from the mold without transfer of any residues.

The innovative FlexPLAS® release film is not only suitable for use with prepreg technology but can also be used for other manufacturing processes such as the (vacuum) infusion process or the wet layup process. The release properties of the flexible release film are not solely limited to carbon fiber and glass fiber matrix resins.

In addition, the new technology allows in-mold coating of fiber composite components, whereby the component is coated by applying a gel-coat to the film (see photo). The matt effect of the coated surface can be adjusted via the roughness of the FlexPLAS® release film that is employed. The risk of coating defects is significantly reduced using this approach.

Besides obviating the need to apply release agent on the surfaces of molds, the productivity of various other steps in the process chain can also be increased by using FlexPLAS® release film. Notably, there is no downtime required to thoroughly cleaning the molds and free them from release agent residues. This means that the service life and availability are considerably increased. Also, the fiber composite component can be coated, without release agent residues having to first be removed. Furthermore, if the film remains on the component to the end of the process or up to delivery to the final customer then it also acts as a protective film.

Background information
Fraunhofer IFAM in Bremen, Germany, has for many years been working on issues related to the use of release agents. These work areas include the removal and reaction of release agents on fiber composite components, in-line monitoring, and the replacement of release agents by permanent release layers.

Release agents are essential for manufacturing fiber composite components. Prior to the start of the layer build up, they are applied to the full surface of the molds in order to ensure easy removal of the cured components. On removing a fiber composite component from a mold, the separation occurs within the release agent layer. This is why some release agents always end up on the component surface. These release agent residues must be removed prior to coating or bonding the fiber composite components. This can be achieved by cleaning or surface abrasion of resin materials via grinding or blasting processes. It is also necessary to regularly remove release agent residues from the surfaces of the molds.

The scientists of Plasma Technology and Surfaces PLATO at Fraunhofer IFAM have already developed an ultra-thin plasma-polymer release layer to replace release agents. This is already being used in, for example, the car manufacturing industry. A prerequisite for this technology is that the mold is coated in a low pressure plasma reactor. This is, however, not viable for the manufacture of large fiber composite structures for reasons of size. This shortcoming is solved by the newly developed FlexPLAS® release film.

Contact
Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Bremen, Germany
I Fraunhofer Project Group Joining and Assembly FFM
Dipl.-Ing. Gregor Graßl
gregor.grassl@ifam.fraunhofer.de
I Plasma Technology and Surfaces PLATO
Dr. Matthias Ott
matthias.ott@ifam.fraunhofer.de
JEC Europe 2012 Paris
Hall 1, Booth H 64

Anne-Grete Becker | Fraunhofer-Institut
Further information:
http://www.ifam.fraunhofer.de/

More articles from Trade Fair News:

nachricht Diamond Lenses and Space Lasers at Photonics West
15.12.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht COMPAMED 2017: New manufacturing processes for customized products
06.12.2017 | IVAM Fachverband für Mikrotechnik

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>