Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Release agent free FRP component manufacture using FlexPLAS® release film – JEC Europe 2012 in Paris

21.03.2012
The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Germany, will present its work at JEC Europe 2012 in Paris (Hall 1, Booth H 64) from 27 to 29 March 2012. The focus will be on release agent free FRP manufacture using the newly developed FlexPLAS® release film.

In order to be able to manufacture large fiber reinforced plastic (FRP) components – such as those used for aircraft and wind turbine construction – which are free of release agents, researchers of Plasma Technology and Surfaces PLATO and experts in the Fraunhofer Project Group Joining and Assembly FFM at Fraunhofer IFAM have developed a deep-drawable FlexPLAS® release film.


Removal of the FlexPLAS® release film developed by Fraunhofer IFAM, Bremen, from a fiber composite component that was in-mold coated with a gel-coat. (© Fraunhofer IFAM)

This is an elastic polymer film with a flexible plasma-polymer release layer that allows easy removal of components from molds, even when stretched by 300 percent. The film can be applied using a special deep-drawing process without alteration of the tool design, and is suitable for both female and male molds.

The FlexPLAS® release film has already been used to manufacture large carbon fiber reinforced plastic (CFRP) components on a 1:1 scale, without using release agents, via a prepreg process at 180 °C in an autoclave. As will be able to be seen at Booth H 64 in Hall 1 at JEC 2012 in Paris, the resulting large components can then be coated without further pre-treatment. This is because the use of the release film allows clean removal from the mold without transfer of any residues.

The innovative FlexPLAS® release film is not only suitable for use with prepreg technology but can also be used for other manufacturing processes such as the (vacuum) infusion process or the wet layup process. The release properties of the flexible release film are not solely limited to carbon fiber and glass fiber matrix resins.

In addition, the new technology allows in-mold coating of fiber composite components, whereby the component is coated by applying a gel-coat to the film (see photo). The matt effect of the coated surface can be adjusted via the roughness of the FlexPLAS® release film that is employed. The risk of coating defects is significantly reduced using this approach.

Besides obviating the need to apply release agent on the surfaces of molds, the productivity of various other steps in the process chain can also be increased by using FlexPLAS® release film. Notably, there is no downtime required to thoroughly cleaning the molds and free them from release agent residues. This means that the service life and availability are considerably increased. Also, the fiber composite component can be coated, without release agent residues having to first be removed. Furthermore, if the film remains on the component to the end of the process or up to delivery to the final customer then it also acts as a protective film.

Background information
Fraunhofer IFAM in Bremen, Germany, has for many years been working on issues related to the use of release agents. These work areas include the removal and reaction of release agents on fiber composite components, in-line monitoring, and the replacement of release agents by permanent release layers.

Release agents are essential for manufacturing fiber composite components. Prior to the start of the layer build up, they are applied to the full surface of the molds in order to ensure easy removal of the cured components. On removing a fiber composite component from a mold, the separation occurs within the release agent layer. This is why some release agents always end up on the component surface. These release agent residues must be removed prior to coating or bonding the fiber composite components. This can be achieved by cleaning or surface abrasion of resin materials via grinding or blasting processes. It is also necessary to regularly remove release agent residues from the surfaces of the molds.

The scientists of Plasma Technology and Surfaces PLATO at Fraunhofer IFAM have already developed an ultra-thin plasma-polymer release layer to replace release agents. This is already being used in, for example, the car manufacturing industry. A prerequisite for this technology is that the mold is coated in a low pressure plasma reactor. This is, however, not viable for the manufacture of large fiber composite structures for reasons of size. This shortcoming is solved by the newly developed FlexPLAS® release film.

Contact
Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Bremen, Germany
I Fraunhofer Project Group Joining and Assembly FFM
Dipl.-Ing. Gregor Graßl
gregor.grassl@ifam.fraunhofer.de
I Plasma Technology and Surfaces PLATO
Dr. Matthias Ott
matthias.ott@ifam.fraunhofer.de
JEC Europe 2012 Paris
Hall 1, Booth H 64

Anne-Grete Becker | Fraunhofer-Institut
Further information:
http://www.ifam.fraunhofer.de/

More articles from Trade Fair News:

nachricht Solar Collectors from Ultra-High Performance Concrete Combine Energy Efficiency and Aesthetics
16.01.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Energy-Efficient Building Operation: Monitoring Platform MONDAS Identifies Energy-Saving Potential
16.01.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>