Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapid testing of food quality

02.05.2012
Whether fruit, meat or cheese – the quality of food is not always as consumers would like it to be. But, in future, a spectrometer will allow them to gage the quality of food before they buy it. No bigger than a sugar cube, the device is inexpensive to manufacture and could one day even be installed in smartphones.

Is that pear ripe? Or will you be annoyed when you get home and discover that the one you bought is neither sweet nor juicy? And what about that meat? Does it contain too much water, which will make it turn tough when you cook it?


Complete with integrated diffraction grating, grating drive, position detector and optical gaps, the spectrometer is much more compact than those currently available in the market. © Fraunhofer IPMS

Buying the right food is often a question of sheer luck for consumers. But all that is set to change. In future, all you will need to do is hold your smartphone near the product in question, activate the corresponding app, choose the food type from the menu – e.g. “pear” – and straight away the device will make a recommendation: the fructose content of the pear is high, so buy it!

The application is based on a near infrared spectrometer which measures the amount of water, sugar, starch, fat and protein present in the products. The system “looks” several centimeters below the outer surface of the foodstuffs – which means it can detect, for instance, whether the core of an apple is already rotting. Thin packaging film is no problem for the device as it takes measurements straight through it.

But how does the device actually work? By shining a broad-bandwidth light on the item to be tested – for instance a piece of meat. Depending on the meat’s composition, it will reflect different wavelengths of light in the near infrared range with different intensities. The resulting spectrum tells scientists what amounts of which substances are present in the foodstuff.

Smaller than a sugar cube

The novel thing about this spectrometer is its size. With a volume of only 2.1 cc, it is 30 percent smaller than a sugar cube, and thus substantially more compact than its commercially available counterparts, which are around 350 times larger. Another advantage is that the devices are inexpensive to make and suitable for mass production. “We expect spectrometers to develop in the same way that digital cameras did,” says Dr. Heinrich Grüger, who manages the relevant business unit at the Fraunhofer Institute for Photonic Microsystems IPMS in Dresden, where the system is being developed. “A camera that cost 500 euros ten years ago is far less capable than the ones you get virtually for free today in your cell phone.”

Spectrometers are usually manufactured by assembling individual components: The mirrors, optical gaps, grating and detector each have to be put in place individually and properly aligned. The IMPS researchers instead manufacture the individual gratings and optical gaps directly on silicon wafers. But that’s not all: The thin silicon wafers are large enough to hold the components of several hundred spectrometers, which means that hundreds of near infrared systems can be produced in one go. The scientists stack the wafers containing the integrated components on top of the ones bearing the optical components. They then align and bind the wafers, and isolate them to form individual spectrometers. This means the researchers do not need to position each component, but only the respective composite substrates. Another advantage of what is called Micro Electro Mechanical Systems (MEMS) technology is that the devices produced are much more robust than their handmade counterparts.

At the Sensor+Test tradeshow being held in Nuremberg from May 22 to 24, the IPMS research scientists will be exhibiting a prototype of the spectrometer (in Hall 12, Booth 202). The device could be ready for market launch in three to five years. The researchers are also working on creating a corresponding infrastructure. “We are developing intelligent algorithms that analyze the recorded spectrums immediately, compare them with the requirements and then advise the consumer whether or not to buy the item. This advice is based solely on quality features such as ripeness and water content. The system cannot carry out a microbiological or toxicological analysis.” Potential application areas for the spectrometers are not limited to foodstuffs: The device can also detect forgeries, for example, and can verify whether a product is made of high-quality original materials or whether it is a cheap fake. It can also reveal whether parts of a vehicle’s body have been repainted, as well as test the contents of drugs and cosmetic creams.

Dr. Heinrich Grüger | Fraunhofer Research News
Further information:
http://www.fraunhofer.de/en/press/research-news/2012/may/rapid-testing-of-food-quality.html

More articles from Trade Fair News:

nachricht High Resolution Laser Structuring of Thin Films at LOPEC 2017
21.03.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Open ecosystem for smart assistance systems
20.03.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>