Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Quality control in the manufacturing cycle

Even the minutest deviations are detected: Researchers at the Fraunhofer Institute for Factory Operation and Automation IFF have created the “Wheelinspector”, an in-line compatible system for 100 percent inspection of vehicle wheels without contact. The experts will be presenting this and other systems at Control 2013 (Hall 1, Booth 1502) in Stuttgart on May 14 to 17.

Up to eighty geometric features, such as radial and axial runout, width and diameter, relevant to vehicles wheels’ function are inspected before they are launched on the market.

The “Wheelinspector” makes non-contact measurement of light-alloy wheels directly in the production process possible for the first time. © Fraunhofer IFF

These have usually been inspected randomly with tactile measurement and under laboratory conditions away from the production line – for instance, in a room adjacent to the production floor. The procedure takes up to approximately forty-five to sixty minutes per wheel, thus making it impossible to inspect 100 percent of the wheels produced. Defects and their causes are detected and rectified only with some delay.

Together with its industry partner Ascona GmbH, a specialist for optical profile measurement systems headquartered in Meckenbeuren in the Lake Constance district, Fraunhofer experts developed the “Wheelinspector”. “The system makes fully optical, non-contact measurement of light-alloy wheels directly in the production process possible for the first time,” explains Ralf Warnemünde, Deputy Manager of the Measurement and Testing Technology Business Unit at the Fraunhofer IFF. “Immediately after they have been machined, that is, turned, milled and drilled, the new 3D laser technology compares real finished products with their digital model. It scans a multitude of geometric parameters and, with a cycle time of twenty seconds to inspect one wheel, can be integrated fully in the production flow.” The measurement system does more than just assure quality: A manufacturing unit can respond to deviations from process parameters without delay and thus organize production processes far more cost effectively.

The basis of the system is the OptoInspect 3D technology developed at the Fraunhofer IFF, which operates with triangulation that measures points and lines. The system uses a laser light projection. A camera registers the light of the projection reflected diffusely by the part. On the basis of the perspective, the laser projection in the camera image changes according to the wheel’s shape.

The “Wheelinspector” measurement system consists of four sensors and a complex system of axes for moving and positioning the sensors during measurement. This guarantees high flexibility; the system can inspect a wide variety of products in the same machine – even when regularly switching between different types of wheels.
Inspection proceeds thusly: Wheels are rolled into the measuring unit on a conveyer, are centered and locked in place mechanically. An image-based identification system upstream recognizes the particular type of wheel and transmits specific features, such as diameter, width or offset, to the measuring unit. These coordinates are used to align each of the positioning axes of the sensors to their correct position. The sensor cluster revolves around the wheel 360 degrees and scans the measured values. The entire scanning cycle for one wheel is completed after approximately twenty seconds.

The system compares the results of 3D measurements with the tolerances from the 3D CAD model of the vehicle wheel. Deviations of parts resulting from tool wear or breakage are reported to the machines immediately. This prevents serial defects and resulting costs.

The “Wheelinspector” is already being used successfully in the automotive supplier industry. Attendees of Control 2013 will be able to see how the technology works live: The Fraunhofer Vision Alliance will be presenting a wheel inspection system together with the “Wheelinspector” at the trade fair in Stuttgart.

United under the theme “3D Image Processing for Industrial Quality Assurance”, the sixteen institutes involved will be displaying other highlights such as visualization software for 3D terahertz data, which makes the invisible visible.

René Maresch | Fraunhofer-Institut
Further information:

Further reports about: IFF OptoInspect 3D production process

More articles from Trade Fair News:

nachricht Creating living spaces for people: The »Fraunhofer CityLaboratory« at BAU 2017
14.10.2016 | Fraunhofer-Gesellschaft

nachricht Reducing Weight through Laser-assisted Material Processing in Automobile Construction
13.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>