Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Production certainty

30.04.2013
Production processes are becoming increasingly complex and effective. Fraunhofer researchers are presenting a new form of laser-based material processing at the LASER World of Photonics Trade Fair and Congress in Munich from 13-16 May 2013 (Hall C2, Booth 330). For the first time, surfaces can be treated, then imperfections detected and immediately corrected in a single step.

Leather seats, leather steering wheels, and dashboards of wood are accessories frequently included in luxury automobiles. The interior of a medium-priced car looks very similar. The steering wheels exhibit a textured finish that also reminds one of leather.


Laser-based micro-finished surface.
© Fraunhofer IPT

“Until now, micro-finishes were tooled or etched,” explains Guilherme Mallmann, scientific staff member in the production measurement department of the Fraunhofer Institute for Production Technology IPT in Aachen. To manufacture a texture like this requires several steps at present however, according to the expert, who continues: “With the laser, you can create these finishes more simply and in just one single step.”

During Project Scan4surf over the last two years, a new kind of laser-based micro-finishing was created at IPT in conjunction with industrial partners. The process can be controlled and simultaneously monitored in a single step during production. A modular high-resolution in-line measurement system monitors the pieces during and after micro-finishing. The process is based around an optical sensor that measures depth without making contact. An opto-electronic measurement unit records the spectrum of the interference signal. The measurement beam uses the same beam path as that for the surface finishing. The researchers use low-coherence-length interferometry for this.
“When you throw a pebble into a lake, waves form at the point where the pebble penetrated the water’s surface. If several pebbles fall into the water simultaneously, the waves superpose themselves on one another and propagate. Our technique works in a similar fashion – using light, however. In this instance, the measurement beam travels to the surface of the piece. The object that has been processed reflects the measurement beam and we use this to measure the absolute distance to the piece,” explains Mallmann.

The camera and measurement unit are mounted in a box that is about the size of a small PC. The camera is connected to a computer that processes the data it receives and immediately intercedes in case of an imperfection. This facilitates quality control during production by means of simultaneous computer-assisted adjustment of the process in real time.
“If imperfections arose during processing, they were only detected at the end, until now. If texturing of the surface is too shallow or too deep at a few locations on the surface, for instance because the temperature changed during processing or external influences from other machinery disrupted the accuracy, this is adjusted for immediately,” says Mallmann. At the LASER World of PHOTONICS Trade Fair and Congress Fraunhofer reseachers will be showing a prototype of the system.

The new process creates new opportunities for surface processing and increases flexibility in selecting materials. A big advantage is that the system can be easily retrofitted to existing production facilities. Possible applications include automatic positioning of work pieces and their calibration, automatic process initialization, adaptive fabrication and in-situ quality audits, in repair processes for precision machining, electronics, medical and automobile technology as well as in tool making.

Guilherme Mallmann | Fraunhofer-Institut
Further information:
http://www.fraunhofer.de/en/press/research-news/2013/april/production-certainty.html

More articles from Trade Fair News:

nachricht OLEDs applied to paper-thin stainless steel
21.09.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht New VDI standards established for cleanroom technology
11.09.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>