Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Process analysis in real time

09.05.2016

With a real-time mass spectrometer developed by Fraunhofer researchers, it has become possible for the first time to analyze up to 30 components simultaneously from the gas phase and a liquid, including in-situ analysis. This sensitive measurement system is also suitable for the automated monitoring and control of chemical reactions and biotechnological processes. From May 10 to 13, 2016 the team of developers is presenting its new measurement system at the Analytica trade fair in Munich.

The automated detection of products or by-products directly during the process has become an indispensable part of monitoring production processes. Mass spectrometry is a quick and selective method of analyzing compounds in technical, chemical and biotechnical applications – simultaneously, with a high degree of sensitivity, and over an extremely large measurement range. Besides the identification of compounds, this method also makes it possible to evaluate the ion currents quantitatively. By means of integrated data evaluation, concentrations of the monitored substances can be determined and changes of concentration – for example in chemical or biochemical reactions – can be measured and recorded.


With this compact mass spectrometer up to 30 components can be analyzed simultaneously in the gas phase and a liquid.

Fraunhofer IGB

However, detection in process mass spectrometry has till now been limited to compounds from the gas phase. Now researchers from the Fraunhofer Institutes for Chemical Technology ICT, Pfinztal, and Interfacial Engineering and Biotechnology IGB, Stuttgart, have developed a mass spectrometer with which both gases and liquids can be monitored simultaneously in real time.

Multiple inlets with integrated membrane

The centerpiece of the new, patented measurement system foxySPEC is a modified bypass inlet located on the analyzer unit, with which components from the liquid phase can also be analyzed. A microporous membrane is mounted on this inlet. “Driven by the vacuum on the permeate side, volatile substances from the liquid sample vaporize and pass through the membrane,” Martin Joos from Fraunhofer ICT explains. On the other hand, the membrane is impermeable to polar, aqueous solutions. Additionally, its special spatial structure makes it resistant to clogging by solids.

In addition to this, a newly developed measurement sensor makes it possible to carry out even in-situ analysis of liquids, for example in fermenters used for biotechnological production processes. The process engineer Matthias Stier from Fraunhofer IGB describes the advantage: “In such a case the membrane, which is integrated in the measurement sensor, is located directly inside the reactor that is to be monitored.” Due to the physical phase transfer in the chemically inert membrane, the two membrane inlet systems do not display any cross-sensitivity and are very stable in the long term. The new membrane inlets are installed additionally to conventional gas inlets.

Automated control for real-time analysis

With the control unit, the user can determine which inlet is selected by the sampler. IGB engineer Stephan Scherle explains: “The Siemens programming developed by Fraunhofer IGB enables us to select samples within seconds by using the appropriate valve – switching between gas, liquid and in-situ analysis as required – and therefore providing results in real time.” Also, the quadrupole mass spectrometer employed is equipped with auto-calibration, so that up to 30 components can be detected simultaneously in a complex mixture of substances, without previous separation.

A wide range of applications

The detection limits of foxySPEC are below 10 µg substance per liter and thus in the lower ppm range. Since the gases are sucked into the vacuum system of the detection unit via stainless steel pipes, distances of over 10 meters to the point of withdrawal are feasible. Time-consuming and cost-intensive transfer of the samples by pumping is no longer necessary. Depending on the length and diameter of the stainless steel capillaries, gases can be measured in real time – in the vacuum down to 1 mbar or at overpressure up to 100 bar.

The real-time mass spectrometer is suitable for a wide range of applications in the chemical industry and biotechnology, pharmaceutics and food production. Further solutions are to be developed for specific industries.

Suitable for Industry 4.0

The low detection limit, the possibility of measuring several components at the same time and the high speed at which data are generated, are ideal prerequisites for making processes more efficient on the basis of continuous monitoring.

In terms of the “Industry 4.0” platform, the data can be analyzed in real time using intelligent programs, in order to identify other, previously neglected parameters in processes, and thus further optimize and speed up production.

Since foxySPEC detects all masses that enter the measurement system, the unit is not just restricted to one substance, as with most sensors. Consequently foxySPEC can be used flexibly and is the ideal measurement system for demand-driven production.

“If various products are being manufactured in a plant in accordance with a customer’s requirements, foxySPEC can be used directly as a measuring unit without any need for further conversion or modifications,” says Matthias Stier.

Spin-off company and marketing idea

Fraunhofer Venture supports the preparation of a spin-off company for the production, sales and marketing, and the remote maintenance of the foxySPEC real-time process mass spectrometer with funds from the program “Fraunhofer promotes Entrepreneurs”.

The utilization concept developed in this context entails providing foxySPEC with a self-developed connect box, which enables the remote maintenance of the unit. Thus the user does not have to be an expert in the field of mass spectrometry.

foxySPEC is to be distributed via a B2B model. Currently the Fraunhofer team of developers is looking for distribution partners who will pass on the system, integrating foxySPEC as part of the user’s own system – in a so-called OEM (Original Equipment Manufacturer) version. foxySPEC is expected to be available on the market from August 2017.

Demonstration at Analytica

The Fraunhofer researchers will use a first compact prototype to demonstrate how sensitively and selectively the mass spectrometer works. The demonstration can be seen at Analytica, Munich, from May 10 to 13, 2016 at the Fraunhofer joint stand in Hall A1, Stand 526.

Weitere Informationen:

http://www.igb.fraunhofer.de/en/press-media/press-releases/2016/process-analysis... Presseinfo bei Fraunhofer IGB

Dr. Claudia Vorbeck | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

More articles from Trade Fair News:

nachricht AchemAsia 2019 will take place in Shanghai
15.06.2018 | DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V.

nachricht Insects supply chitin as a raw material for the textile industry
05.06.2018 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>