Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Process analysis in real time

09.05.2016

With a real-time mass spectrometer developed by Fraunhofer researchers, it has become possible for the first time to analyze up to 30 components simultaneously from the gas phase and a liquid, including in-situ analysis. This sensitive measurement system is also suitable for the automated monitoring and control of chemical reactions and biotechnological processes. From May 10 to 13, 2016 the team of developers is presenting its new measurement system at the Analytica trade fair in Munich.

The automated detection of products or by-products directly during the process has become an indispensable part of monitoring production processes. Mass spectrometry is a quick and selective method of analyzing compounds in technical, chemical and biotechnical applications – simultaneously, with a high degree of sensitivity, and over an extremely large measurement range. Besides the identification of compounds, this method also makes it possible to evaluate the ion currents quantitatively. By means of integrated data evaluation, concentrations of the monitored substances can be determined and changes of concentration – for example in chemical or biochemical reactions – can be measured and recorded.


With this compact mass spectrometer up to 30 components can be analyzed simultaneously in the gas phase and a liquid.

Fraunhofer IGB

However, detection in process mass spectrometry has till now been limited to compounds from the gas phase. Now researchers from the Fraunhofer Institutes for Chemical Technology ICT, Pfinztal, and Interfacial Engineering and Biotechnology IGB, Stuttgart, have developed a mass spectrometer with which both gases and liquids can be monitored simultaneously in real time.

Multiple inlets with integrated membrane

The centerpiece of the new, patented measurement system foxySPEC is a modified bypass inlet located on the analyzer unit, with which components from the liquid phase can also be analyzed. A microporous membrane is mounted on this inlet. “Driven by the vacuum on the permeate side, volatile substances from the liquid sample vaporize and pass through the membrane,” Martin Joos from Fraunhofer ICT explains. On the other hand, the membrane is impermeable to polar, aqueous solutions. Additionally, its special spatial structure makes it resistant to clogging by solids.

In addition to this, a newly developed measurement sensor makes it possible to carry out even in-situ analysis of liquids, for example in fermenters used for biotechnological production processes. The process engineer Matthias Stier from Fraunhofer IGB describes the advantage: “In such a case the membrane, which is integrated in the measurement sensor, is located directly inside the reactor that is to be monitored.” Due to the physical phase transfer in the chemically inert membrane, the two membrane inlet systems do not display any cross-sensitivity and are very stable in the long term. The new membrane inlets are installed additionally to conventional gas inlets.

Automated control for real-time analysis

With the control unit, the user can determine which inlet is selected by the sampler. IGB engineer Stephan Scherle explains: “The Siemens programming developed by Fraunhofer IGB enables us to select samples within seconds by using the appropriate valve – switching between gas, liquid and in-situ analysis as required – and therefore providing results in real time.” Also, the quadrupole mass spectrometer employed is equipped with auto-calibration, so that up to 30 components can be detected simultaneously in a complex mixture of substances, without previous separation.

A wide range of applications

The detection limits of foxySPEC are below 10 µg substance per liter and thus in the lower ppm range. Since the gases are sucked into the vacuum system of the detection unit via stainless steel pipes, distances of over 10 meters to the point of withdrawal are feasible. Time-consuming and cost-intensive transfer of the samples by pumping is no longer necessary. Depending on the length and diameter of the stainless steel capillaries, gases can be measured in real time – in the vacuum down to 1 mbar or at overpressure up to 100 bar.

The real-time mass spectrometer is suitable for a wide range of applications in the chemical industry and biotechnology, pharmaceutics and food production. Further solutions are to be developed for specific industries.

Suitable for Industry 4.0

The low detection limit, the possibility of measuring several components at the same time and the high speed at which data are generated, are ideal prerequisites for making processes more efficient on the basis of continuous monitoring.

In terms of the “Industry 4.0” platform, the data can be analyzed in real time using intelligent programs, in order to identify other, previously neglected parameters in processes, and thus further optimize and speed up production.

Since foxySPEC detects all masses that enter the measurement system, the unit is not just restricted to one substance, as with most sensors. Consequently foxySPEC can be used flexibly and is the ideal measurement system for demand-driven production.

“If various products are being manufactured in a plant in accordance with a customer’s requirements, foxySPEC can be used directly as a measuring unit without any need for further conversion or modifications,” says Matthias Stier.

Spin-off company and marketing idea

Fraunhofer Venture supports the preparation of a spin-off company for the production, sales and marketing, and the remote maintenance of the foxySPEC real-time process mass spectrometer with funds from the program “Fraunhofer promotes Entrepreneurs”.

The utilization concept developed in this context entails providing foxySPEC with a self-developed connect box, which enables the remote maintenance of the unit. Thus the user does not have to be an expert in the field of mass spectrometry.

foxySPEC is to be distributed via a B2B model. Currently the Fraunhofer team of developers is looking for distribution partners who will pass on the system, integrating foxySPEC as part of the user’s own system – in a so-called OEM (Original Equipment Manufacturer) version. foxySPEC is expected to be available on the market from August 2017.

Demonstration at Analytica

The Fraunhofer researchers will use a first compact prototype to demonstrate how sensitively and selectively the mass spectrometer works. The demonstration can be seen at Analytica, Munich, from May 10 to 13, 2016 at the Fraunhofer joint stand in Hall A1, Stand 526.

Weitere Informationen:

http://www.igb.fraunhofer.de/en/press-media/press-releases/2016/process-analysis... Presseinfo bei Fraunhofer IGB

Dr. Claudia Vorbeck | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

More articles from Trade Fair News:

nachricht SYSTEMS INTEGRATION 2018 in Switzerland focuses on building blocks for industrial digitalization
20.11.2017 | IVAM Fachverband für Mikrotechnik

nachricht Medica 2017: New software enables early diagnosis of arteriosclerosis
06.11.2017 | Technische Universität Kaiserslautern

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>