Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Printable luminous particles enable cost-effective and curved luminous surfaces

25.03.2015

Researchers at the INM – Leibniz Institute for New Materials have now developed a new method that enables electroluminescence on large, curved surfaces in a cost-effective way: in this case, the light-emitting layer and all other components are produced by means of wet-chemical, printable methods.

Light-emitting diodes (LEDs) are the modern lighting devices used in lamps, signals, signs or displays. By contrast, organic semiconducting light-emitting materials (OLEDs) can be incorporated in thin layers and used on curved surfaces. However, OLEDs for large-area illumination are cost-intensive at present owing to their low efficiency and short lifetime.


Electroluminescent light sheets

Copyright: INM; free within this press release

One promising alternative for modern lighting is electroluminescence. Special nanoparticles, so-called phosphors, are excited in an electric field to emit light. Researchers at the INM – Leibniz Institute for New Materials have now developed a new method that enables electroluminescence on large, curved surfaces in a cost-effective way: in this case, the light-emitting layer and all other components are produced by means of wet-chemical, printable methods.

The researchers from the INM will be presenting their results from 13 to 17 April 2015 in Hall 2 at the stand B46 of the Hannover Messe in the context of the leading trade fair for R & D and Technology Transfer.

“For processing we only need temperatures below 200 degrees Celsius. This means that we can apply all the required partial layers even to films or other flexible substrates,” explains Peter William de Oliveira, head of the program division Optical Materials. Hence, “luminous surfaces” could be produced very cost-effectively and even in large formats.

The luminous unit consists of two electrically conductive layers, between which the light-emitting particles are sandwiched in a dielectric binder layer. At least one of the conductive layers is also transparent. Due to the insulating layer, the absorbed energy is efficiently converted into light and appreciable heating is avoided. On application of an AC voltage, light is emitted from the electroluminescent layer.

“We embed luminous particles in the form of functionalized zinc sulphide nanoparticles as phosphors into the binder layer,” explains de Oliveira “these are doped with copper or manganese. At present this allows the generation of green and blue-green light.”

The electroluminescent light sheets developed at the INM can be directly connected to the customary mains voltage of 230 volts. Rectifiers, ballast capacitors or other switching units that first adapt the voltage can be omitted.

The researchers are currently working on further functionalization of the phosphor nanoparticles. “Our goal is to generate white light by means of an altered doping or by introducing coloured pigments into the luminous layer,” says physicist de Oliveira. At the same time the developers want to alter the materials in such a way that the light sheets can be used even at a lower mains voltage.

Your contacts at the stand B46 in Hall 2:
Dr. Thomas Müller
Dr. Mario Quilitz

Your expert at the INM:
Dr. Peter William de Oliveira
INM – Leibniz Institute for New Materials
Head of Optical Materials
Phone: +49681-9300-148
peter.oliveira@inm-gmbh.de

INM conducts research and development to create new materials – for today, tomorrow and beyond. Chemists, physicists, biologists, materials scientists and engineers team up to focus on these essential questions: Which material properties are new, how can they be investigated and how can they be tailored for industrial applications in the future? Four research thrusts determine the current developments at INM: New materials for energy application, new concepts for medical surfaces, new surface materials for tribological systems and nano safety and nano bio. Research at INM is performed in three fields: Nanocomposite Technology, Interface Materials, and Bio Interfaces.
INM – Leibniz Institute for New Materials, situated in Saarbrücken, is an internationally leading centre for materials research. It is an institute of the Leibniz Association and has about 210 employees.

www.inm-gmbh.de

Dr. Carola Jung | idw - Informationsdienst Wissenschaft

Further reports about: INM Nanoparticles OLEDs Optical luminous surfaces materials surfaces

More articles from Trade Fair News:

nachricht SYSTEMS INTEGRATION 2018 in Switzerland focuses on building blocks for industrial digitalization
20.11.2017 | IVAM Fachverband für Mikrotechnik

nachricht Medica 2017: New software enables early diagnosis of arteriosclerosis
06.11.2017 | Technische Universität Kaiserslautern

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>