Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Precision space maneuvers

01.02.2012
"embedded world" trade fair - Nuremberg

Spacecraft must operate with utmost precision when conducting landing maneuvers on other planets, or docking to a space station. To ensure they do not drift off course, imaging sensors collect a fl ood of data that are analyzed in real time.


The MUSE onboard computer allows a spacecraft to be piloted and positioned with pinpoint accuracy. © Fraunhofer FIRST

Researchers at the Fraunhofer Institute for Computer Architecture and Software Technology FIRST have engineered a system based on multicore technologies that allow spacecraft to be piloted and positioned with pinpoint accuracy. It can be seen at the embedded world trade show in Nuremberg from February 28 to March 1, 2012 (Hall 5, Booth 228).

For a spacecraft to “see” and maintain its equilibrium, it needs a high-performance onboard computer. This device must process a myriad of sensor data simultaneously, and withstand the severe conditions of outer space. Through the MUSE project (Multicore Architecture for Sensor-based Position Tracking in Space), researchers are seeking to improve the positioning and guidance of such spacecraft.

Under the plan, scientists from FIRST developed an extremely high-performing onboard computer using modern multi-core processors. High-resolution cameras and infrared or radar sensors on the spacecraft deliver immense data volumes that help determine the position of the target object. These data have to be processed in real time, in order to compute the precise control of the vehicle. Spaceflight-enabled computers to date have always had to make sacrifi ces here, in terms of quality, due to the high performance requirements.

“In space, the major challenge is this: the system must provide an enormously high computing capacity, while power supply, weight, space and cooling requirements are kept to a minimum. In addition, cosmic radiation may cause sporadic data corruption, which has to be detected and rectifi ed by means of error tolerance mechanisms,” explains Samuel Pletner, in charge of Aerospace Business Development at FIRST. “We have to reliably eliminate the possibility of undetected errors leading to erroneous guidance commands and ultimately, uncontrolled movements of the spacecraft.”

The researchers solve the problem with the P4080 Multicore Processor, manufactured by Freescale, which is highly integrated and particularly robust. Besides maximum processing capacity, more effi cient error tolerance mechanisms can also be realized with these processors. Fraunhofer experts have devised complex position-detection algorithms specially designed for multi-core architectures. Thus, critical calculations can be conducted on a number of different processor cores, and the results checked through a reliable comparison.

The MUSE project is funded by the Space Flight Agency of the German Aerospace Center DLR, with funding from the German Federal Ministry of Economics and Technology.

Samuel Pletner | Fraunhofer-Institut
Further information:
http://www.fraunhofer.de/en/press/research-news/2012/january/precision-space-maneuvers.html

Further reports about: AEROSPACE Architecture FIRST LEGO League MUSE Multicore Space information technology

More articles from Trade Fair News:

nachricht IVAM Product Market „High-tech for Medical Devices“ at COMPAMED 2017
18.10.2017 | IVAM Fachverband für Mikrotechnik

nachricht Fiber Optic Collimation C-Lenses will be Exhibited by FISBA at OFC 2017
14.03.2017 | FISBA AG

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>