Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plethora – the universal prototyping platform for wireless systems

04.02.2014
The Plethora prototyping platform offers developers various sensors, wireless technologies and interfaces on a single board.

Plethora was originally designed to make it easier to test different distributed data collection and localization processes with a single hardware platform.


Plethora combines a wide selection of sensors and wireless modules and interfaces. So developers are able to implement and test different data transmission systems on a single platform.
Bernd Müller / Fraunhofer ESK

However, because Plethora provides all developers of complex, distributed applications in fields such as building or process automation greater testing leeway, Fraunhofer ESK researchers are introducing the prototyping platform to the public for the first time at the embedded world trade fair in Nürnberg (February 25-27, 2014, stand 5-250, hall 5).

For applications that require distributed data collection and processing capability, developers are likely to have various solutions at their disposal, all of which need different sensors and wireless technologies. The issue is that it is often not possible to test different system designs because different platforms would be required. Plethora addresses this problem by offering a single platform for the prototype implementation and testing of different data transmission, automation or localization processes.

To achieve this, the system combines a wide selection of sensors and various modules and interfaces. Using Plethora, developers can test solutions for diverse application scenarios in a near-real environment and among other tasks, compare the various properties of different wireless technologies in an easy and efficient manner. With its modular design, the platform furthermore offers an ideal basis for installing additional complex sensors or wireless modules.

Technical data

The sensors and wireless modules are controlled by a high-performance Cortex-M3 microcontroller. The platform comes installed with the following sensors: barometer, accelerometer, magnetometer, temperature, humidity and ambient light. Additional external sensors can be connected. For communication and localization, Plethora features a transceiver in the 868 MHz band, as well as IEEE 802.15.4 and IEEE 802.11 b/g compliant transceivers for the 2.4 GHz band.

Each receiver has its own amplifier and software-controlled antenna outputs that can also be used to analyze the impact of various antennas and transmission levels on the localization and range of the system. Plethora can be powered by a lithium-polymer battery, as well as by a USB or 12V connection, both of which can be used to charge the battery.

For developers who need additional functionality, other modules are very easy to connect by means of a CAN bus or via SPI, I2C and UART interfaces, which are accessible through 12-pin expansion connectors.

Outlook

The next phase of development involves integration of an ultra wideband transceiver, which enables significantly higher speeds for video transmissions and precise localization algorithms. In parallel, the comprehensive software framework will be enhanced in order to further simplify access to the system and to better link the various technologies with one another.

Plethora's flexibility puts Fraunhofer ESK in the position of being able to develop localization and communication systems tailored to the individual needs of the customer. Interested customers can even employ the system to implement their own ideas. Examples of the situation-specific requirements and concepts that make custom development necessary include the type of power supply, the integration of existing sensors and networks and the special characteristics of the application itself.

Marion Rathmann | Fraunhofer-Institut
Further information:
http://www.esk.fraunhofer.de/en/media/press_releases/pm1401.html

More articles from Trade Fair News:

nachricht LZH shows the potential of the laser for industrial manufacturing at the LASYS 2016
25.05.2016 | Laser Zentrum Hannover e.V.

nachricht Aachen Center for 3D Printing at RapidTech 2016: Additive Manufacturing for Medium-Size Companies
25.05.2016 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

LZH shows the potential of the laser for industrial manufacturing at the LASYS 2016

25.05.2016 | Trade Fair News

Great apes communicate cooperatively

25.05.2016 | Life Sciences

Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants

25.05.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>