Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Paving the way for favorable-cost solar cells

24.08.2011
At the European Photovoltaic Exhibition PVSEC 2011 in Hamburg, the Fraunhofer FEP will present new thin film processes that could drastically reduce the cost of producing solar cells.

Thin film photovoltaic technology offers huge potential for producing PV modules at lower cost and with efficient utilization of resources.


Thin film solar cells: cost- and resource-efficient. © Fraunhofer FEP

At PVSEC 2011 (Photovoltaic Solar Energy Conference and Exhibition) which is being held from 5 – 8 September in Hamburg, the Fraunhofer Institute for Electron Beam and Plasma Technology FEP will present new, favorable-cost manufacturing processes for PV cells.

Thin film solar cells consist of several layers having different functions.
The light-absorbing layer is in the center, encapsulation layers on the outer sides protect the solar cell against environmental influences, and contact layers divert the resulting current.

Using its broad technology portfolio the Fraunhofer FEP is able to deposit these layers on large surfaces on an industrial scale.

The objective of the Fraunhofer FEP in Dresden is to apply layers of excellent quality at higher production rates than currently employed production processes in order to ultimately reduce the production costs.

Dr. Torsten Kopte, contact person for solar energy at the Fraunhofer FEP, believes thin film technology has enormous potential: "Currently photovoltaic modules cost several hundred euros per square meter. In the future we expect that vacuum-based coating technologies which we use at the Fraunhofer FEP

will allow the production cost of photovoltaic modules to be reduced by at least 90%.”

The scientists at Fraunhofer FEP have already achieved promising results for depositing back contacts. They have successfully deposited molybdenum layers for so-called CIGS thin film cells, having ten times higher productivity than competing technologies. Dr. Jens-Peter Heinß, scientist at the Fraunhofer FEP, believes there is still further potential for improvement: “The high deposition rate of 60 nanometers per second is just an intermediate result and I am sure that we can increase this further. For the time being, it is essential for us that the layer properties and efficiency of the cells remained qualitatively equivalent to those of slower processes.”

At the 26th PVSEC in Hamburg the Fraunhofer FEP will present other back contact layers for CIGS cells and flexible solar cells. For further information please visit us at the joint booth of Wirtschaftsförderung Sachsen (Saxony Economic Development Corporation ) B6-B35.

Scientific contact:
Dr. Marita Mehlstäubl
Fraunhofer Institute for Electron Beam and Plasma Technology FEP
Phone +49 351 2586-214
marita.mehlstaeubl@fep.fraunhofer.de
Press contact:
Annett Arnold
Fraunhofer Institute for Electron Beam and Plasma Technology FEP
Phone +49 351 2586-452
annett.arnold@fep.fraunhofer.de

Annett Arnold | Fraunhofer-Institut
Further information:
http://www.fep.fraunhofer.de/

More articles from Trade Fair News:

nachricht Diamond Lenses and Space Lasers at Photonics West
15.12.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht COMPAMED 2017: New manufacturing processes for customized products
06.12.2017 | IVAM Fachverband für Mikrotechnik

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>