Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Organic farming without cabbage flies

19.03.2012
When cabbage root flies lay their eggs on freshly planted vegetables, organic farmers often lose their entire crop. In the future, pellets made of cyanobacteria and fermentation residues from biogas plants will repel these insects in an ecologically compatible manner – and simultaneously fertilize the plants. Researchers are presenting the pellets at the Hannover Messe from April 23–27 (Hall 26, Booth C08).

More and more frequently, customers are buying organic vegetables, because these products are not treated with pesticides or laden with chemicals. The flipside: if the plants are attacked by pests, farmers can do almost nothing to protect them. Thus, cabbage root flies for example, which lay their eggs in the spring and fall on freshly planted greens, can often cost an entire harvest. The only hope: farmers wait to plant until the fly‘s flying time has passed.

Soon, however, farmers will be able to repel these pests reliably – and still keep true to organic farming practices: with pellets that researchers at the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB in Stuttgart jointly engineered with their colleagues at the University of West Hungary in Mosonmagyaróvár, Hungary, on behalf of various organic agriculture associations. “The pellets primarily consist of fermentation residues from biogas production, but they also contain 0.1 percent cyanobacteria,” says Dr. Ulrike Schmid-Staiger, group manager at IGB. If you place the pellets around the freshly planted vegetables, then the cyanobacteria are degraded by the soil flora and release a scent that repels cabbage root flies. The nutrient-rich fermentation residues additionally fertilize the plants. The pellets are easy to apply, and the nutrients are directly available to the plants.

To cultivate cyanobacteria, the scientists used a flat-panel airlift reactor that they originally developed for microalgae. In this reactor, they can cultivate bacteria using only light, CO2 and mineral nutrients. The challenge: to mix the bacteria thoroughly, and drive them to the bright surface, air and CO2 had to flow into the reactor. However, cyanobacteria are extremely sensitive. Structurally, they are like a long string of pearls. If gases are introduced with too much pressure, it will destroy these strings. The researchers thus had to regulate the air inflow to permit the mass to be thoroughly mixed without damaging the bacteria. Next, the cyanobacteria are dried with super-heated steam. Then the dried cyanobacteria mass is blended with the fermentation residues and pressed into pellets.

... more about:
»C08 »CO2 »IGB »Interfacial Engineering »organic farms

The researchers obtain the fertilizing fermentation residues from eco-certified farms in which liquid manure is decomposed into biogas. In just 14 days, 300 liters of biogas per kilogram of organic dry mass is produced. Any remnants that cannot be further fermented are dried. To intensify the fertilization effect of these fermentation residues, the researchers mixed them with ordinary fertilizer from the organic farms, including horn meal. To determine the optimum mixture, they looked to ryegrass. Ryegrass can be cut three times within the relatively short space of only three months, drawing many nutrients from the soil in the process.

The researchers have already tested the pellets in open-field studies in Hungary and Spain. In the experiments, cabbage root flies did not attack any of the growing cabbage or kohlrabi. The fertilizer effect is also significant: the turnip cabbages grew twice as large as the unfertilized ones. Researchers will demonstrate the process at the Hannover Messe from April 23–27 (Hall 26, Booth C08). There, visitors can get a look at the pellets as well as the algae reactor.

Dr. rer. nat. Ulrike Schmid-Staiger | Fraunhofer-Institut
Further information:
http://www.fraunhofer.de/en/press/research-news/2012/march/organic-farming-without-cabbage-flies.html

Further reports about: C08 CO2 IGB Interfacial Engineering organic farms

More articles from Trade Fair News:

nachricht Hannover Messe 2018: Cognitive system for predictive acoustic maintenance
19.04.2018 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

nachricht ILA 2018: Cost-effective carbon fibers for light-weight construction
18.04.2018 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>