Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New MAX Infrared Oven is Five Times Faster For Glass Tempering

08.07.2016

Fast Homogenous Heating Saves Time and Valuable Space

Packaging glass for medications or tablets must be tempered after it is heat-formed, otherwise thermal stresses can lead to glass bottles or ampoules cracking or shattering. The new MAX infrared oven carries out this stress-relieving process in a very homogenous IR radiation field within minutes in contrast to conventional heating processes.


Polarity meter shows residual stresses below cannula and a stress-free cannula in the top

Copyright Heraeus Noblelight 2016


Tempering with the MAX Infrared Oven saves time and space

Copyright Heraeus Noblelight 2016

As opposed to conventional ovens, the IR method saves significant time and space. For example, the oven needs to be only two meters long for continuous, production line type operations and eliminates the need for long heat-up and cool-down periods associated with ovens providing batch operation. Compared with conventional electric heating methods, glass-heating with a MAX is five times faster and cuts energy consumption by 90%.

Heraeus is showing innovative solutions, from UV to infrared, at the Glasstec exhibition (hall 12, booth 12/A 37) in Dusseldorf in September.

Medication, tablets and pills are packaged in small glass bottles or ampoules. These need to be safe and clean but the special shape of this glass packaging makes its manufacture something of a challenge. The glass is formed under heat, which means there are residual thermal stresses. Before they are put into use, these thermal stresses must be removed, otherwise there is a danger that the glass will crack.

Stress relief is achieved by tempering. This involves a controlled heating to around 600°C, depending on the type of glass, followed by a slow cool-down. Various technologies can be used for this heating process, including induction ovens and conventional fireclay-clad ovens for batch operation and convection- or standard infrared ovens for high volume continuous operations. A new development is the MAX infrared oven, which offers significant user benefits.

The MAX Infrared Oven – Precisely tailored to meet customer needs

Tempering packaging glass with warm air takes up valuable time and space. As warm air transfers only a limited amount of heat, warm air, or convection, ovens need to be quite long for continuous operations.
Batch ovens must be heated up for a long time and then allowed to cool until it is safe to remove the tempered glass.

The new MAX infrared oven from Heraeus Noblelight is superior to both techniques, as, because of its design, it transfers the energy required in a very short time. With its unique combination of radiation, convection and reflection, heating is especially fast.

In contrast to the fireclay-lined oven, both the process chamber and the feeder system of the new MAX oven are made of pure quartz material. On one hand, this is extremely resistant to thermal shock and on the other hand it minimizes the possibility of the glass containing unwanted particle impurities.

In cannulas or glass bottles the base is relatively thick and the walls comparatively thin. Consequently, base and walls are heated at different rates. The QRC material used in the MAX oven is made up of quartz glass with a micro- and nano structure so that the infrared radiation is diffused to provide a particularly homogenous heating effect.

Tempering within a few minutes

In order to temper the glass products, they are passed into the MAX oven, heated to 600°C and held for a short time at this temperature. They are then removed from the oven and cooled in a controlled manner. Tests in the Heraeus Applications Centre in Kleinostheim have established that when glass is heated at a rate of 50 degrees C temperature rise per second then the complete tempering process, including cool-down and dependent of sample geometry, can be completed in around five minutes. By using a polarity meter, it was then shown that the stresses in the glass could be successfully removed.

The test oven had a power of 15kW, so that the temperature was held constant at the 600°C necessary for the glass tempering. Juergen Weber, development manager at Heraeus, points out another benefit, “Our calculations also showed that with this oven it is potentially possible to temper around 1000 glass products, at just 15 kW, within one hour!”

MAX Infrared Ovens Save Energy

All MAX infrared ovens share the same compact construction with specially-developed IR mirrors in the process chamber. Energy is then utilized more efficiently because the infrared radiation is reflected in an optimal fashion within the oven. In addition, the natural convection has an extra heating effect.
All tests with customers’ own material in the Applications Centre have delivered compelling evidence that, compared with conventional electrical heating methods, the MAX oven is five times faster and, at the same time, uses only one-fifteenth of the energy (over 90% less).

Consequently, the tempering process time can be reduced. This greatly increases the energy efficiency and lowers the operating costs. MAX infrared ovens also allow system solutions as computer simulation in the design phase help to create the most efficient heating process.

MAX ovens can be located in a modular fashion in series and individually controlled, to allow for rapid product change-over. The compact ovens are also easily connected with feeder systems, and if necessary, these can be of quartz glass.

Heraeus, the technology group headquartered in Hanau, Germany, is a leading international family-owned company formed in 1851. With expertise, a focus on innovations, operational excellence and an entrepreneurial leadership, we strive to continuously improve our business performance. We create high-quality solutions for our clients and strengthen their competitiveness in the long term by combining material expertise with technological know-how. Our ideas are focused on themes such as the environment, energy, health, mobility and industrial applications.

Our portfolio ranges from components to coordinated material systems which are used in a wide variety of industries, including the steel, electronics, chemical, automotive and telecommunications industries. In the 2015 financial year, Heraeus generated revenues without precious metals of €1.9 bn and a total revenue including precious metal of €12.9 bn . With approximately 12,500 employees worldwide in more than 100 subsidiaries in 38 countries, Heraeus holds a leading position in its global markets.

Heraeus Noblelight GmbH with its headquarters in Hanau and with subsidiaries in the USA, Great Britain, France, China and Australia, is one of the technology- and market-leaders in the production of specialty light sources and systems. In 2015, Heraeus Noblelight had an annual turnover of 158.3 Million € and employed 828 people worldwide.

The organization develops, manufactures and markets infrared and ultraviolet emitters, systems and solutions for applications in industrial manufacture, environmental protection, medicine and cosmetics, research, development and analytical measurement techniques.

For further information, please contact:

Technical: Heraeus Noblelight GmbH
Reinhard-Heraeus-Ring 7
D-63801 Kleinostheim
Tel +49 6181/35-8545, Fax +49 6181/35-16 8545
E-Mail hng-infrared@heraeus.com

Press: Dr. Marie-Luise Bopp
Heraeus Noblelight GmbH,
Marketing
Tel +49 6181/35-8547, Fax +49 6181/35-16 8547
E-Mail marie-luise.bopp@heraeus.com
www.heraeus-noblelight.com

Dr. Marie-Luise Bopp | Heraeus Noblelight GmbH

More articles from Trade Fair News:

nachricht High Resolution Laser Structuring of Thin Films at LOPEC 2017
21.03.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Open ecosystem for smart assistance systems
20.03.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>