Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MUTE -- Efficient city car, showcase for electromobility research

13.09.2011
TU Muenchen rolls out its electromobility vehicle concept at International Motor Show in Frankfurt

With its electric vehicle MUTE, the Technische Universitaet Muenchen (TUM) presents the first publicly visible result of its research program TUM.Energy. MUTE will showcase the TUM's answer to future challenges in personal mobility at the International Motor Show (IAA) in Frankfurt. MUTE is a purely electric, energy-efficient vehicle that meets all requirements of a full-fledged car. With MUTE, the 20 involved departments present a strategy for manufacturing a mass-production vehicle at an overall cost on par with that of comparable combustion engine vehicles.


At the International Motor Show in Frankfurt, the Technische Universitaet Muenchen is rolling out the first publicly visible result of its research program TUM.Energy: a purely electric, energy-efficient city car that embodies and integrates research from 20 different university departments. Credit: Project MUTE / Copyright TU Muenchen

With MUTE, researchers from the TU Muenchen have created an agile, sporty two-seater for regional road traffic. It has space sufficient for two persons plus luggage. The L7E certified electric motor, which is electronically limited to 15 kW, accelerates the light vehicle to 120 km/h. The lithium-ion battery is designed to guarantee a range of at least 100 kilometers. When needed, a zinc-air battery serves as a range extender – a "reserve" battery, as it were. Its sporty suspension and the active torque vectoring differential drive ensure good cornering stability and excellent driving performance.

The MUTE design conveys a snazzy, self-confident appearance. The built-in features fulfill all essential requirements of a modern road vehicle. A safety package, including an electronic stability program (ESP) system, a robust passenger compartment and crash elements made of carbon fiber reinforced plastic, imparts a high level of safety to the vehicle. Regarding ergonomics and comfort, here too, the MUTE concept leapfrogs other developments to date in the L7E class.

Decisive for the great efficiency of the MUTE is its low weight. A stable vehicle frame made of aluminum and a chassis made of carbon fiber reinforced plastic reduces the curb weight, including batteries, to a mere 500 kilograms. "Low weight is essential for an electric vehicle," says the TUM vehicle engineer Prof. Markus Lienkamp. "Greater weight requires more battery performance for the same range, which results in higher costs. Greater weight also results in reduced dynamics for a given power output. But we want a car that is affordable and fun to drive."

A further contribution to efficiency comes from the torque vectoring differential: A small electrical motor in the differential that functions both as a motor and as a generator serves to ideally distribute the forces between the two back tires. Especially when braking in curves, twice as much energy can be recovered as without the torque vectoring technology. At the same time, the advantageous distribution of drive and braking forces makes the car much more agile and also safer.

MUTE has been newly developed from scratch. Every part has been optimized for three main factors: efficiency, low overall cost and safety. Extensive preliminary studies were carried out to ascertain what mobility of the future will look like, what customer requirements will be decisive in purchasing decisions and how these might be fulfilled in a cost-effective and weight-saving manner. This led, among other things, to all tertiary user interface elements (e.g., for navigation and infotainment) being collected into a central touchpad. In addition, the touchpad computer can be used as a mobile interface for server-based, value-added services. This will allow the owner to check the current charging status using a smartphone. While underway, the most energy-efficient route (not only the shortest or fastest) can be determined based on the current traffic situation.

Over 200 staff members of 20 departments of TU Muenchen's Science Center for Electromobility joined forces to develop the MUTE concept. The research network belongs to the cross-faculty research initiative TUM.Energy, which bundles the extensive, long-term research activities of more than 100 departments in eight faculties on the topic of energy to a competence center with international prominence. The Science Center for Electromobility provides testing infrastructure, central test beds and the possibility for building shared prototypes. At the same time it is a docking station for national and international cooperation with research departments in industry and academia. The MUTE prototype was built with funding from the university budget and the Bavarian Research Foundation (BFS); project partners were C-CON, Gerg RPT and IAV. R&R KFZ did the vehicle construction. The TUM holds the intellectual property rights for overall concept. Over 30 partners from industry support the project as a whole.

MUTE represents the official start of the MUNICH SCHOOL OF ENGINEERING, which places its research focus on the key future topic of "Energy – Green Technologies," and educates particularly well-qualified engineering students with an emphasis on research and interdisciplinary.

Contact : Prof. Markus Lienkamp
Technische Universitaet Muenchen
Chair of Vehicle Technology
Boltzmannstr. 15, 85748 Garching
Tel.: 089 289 15345 – Fax : 089 289 15357
E-Mail : ftm@ftm.mw.tum.de
Internet : http://www.fahrzeugtechnik-muenchen.de
Technische Universitaet Muenchen (TUM) is one of Europe's leading universities. It has roughly 460 professors, 7,500 academic and non-academic staff (including those at the university hospital "Rechts der Isar"), and 26,000 students. It focuses on the engineering sciences, natural sciences, life sciences, medicine, and economic sciences. After winning numerous awards, it was selected as an "Elite University" in 2006 by the Science Council (Wissenschaftsrat) and the German Research Foundation (DFG). The university's global network includes an outpost with a research campus in Singapore. TUM is dedicated to the ideal of a top-level research based entrepreneurial university. http://www.tum.de

Andreas Battenberg | EurekAlert!
Further information:
http://www.tum.de
http://www.mute-automobile.de

More articles from Trade Fair News:

nachricht OLEDs applied to paper-thin stainless steel
21.09.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht New VDI standards established for cleanroom technology
11.09.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>