Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Modular and versatile: key technologies for robot-assisted cleaning

25.03.2014

Commercial cleaning robots are designed to clean offices and dispose of waste paper. As part of the collaborative project “Plug & Play for Automation Systems” (AutoPnP), scientists at Fraunhofer IPA have developed the necessary software components for such applications. The individual modules can be put to versatile use, e.g. for detecting and removing dirt as well as for emptying waste-paper baskets. At Automatica 2014, Fraunhofer IPA will demonstrate how these functions can be utilized in a mobile robot assistant.

Seventy percent of professional building cleaning work consists of cleaning floors and disposing of waste. Demographic change is one reason why less and less qualified cleaning staff is available. One possible solution is to automate such work. As part of the AutoPnP collaborative project, scientists at Fraunhofer IPA have developed the necessary software functionalities.


Care-O-bot pulls its cleaning and tool cart to the work site.

source: Dussmann Group/Ecke


Care-O-bot empties the waste-paper basket.

source: Dussmann Group/Ecke

Cleaning floors and emptying waste-paper baskets

In the course of daily floor-cleaning, a robot scans offices for any dirt, which is removed using a cleaning device. First, the robot navigates its way autonomously through open offices to inspect the floor surfaces. Dirt is automatically detected, mapped and then removed by the robot using a battery-powered vacuum cleaner. Next, the cleaning result is checked and, if required, communicated to the human operator.

Using algorithms for object classification, the robot is also able to detect waste-paper baskets, which it grasps with its arm and empties into a collection bin. “In December last year, the cleaning contractor Dussmann in Berlin carried out initial user tests, which successfully demonstrated the feasibility of such cleaning applications using currently available technology,” says Richard Bormann, Research Assistant in the Robot and Assistive Systems department. For professional cleaning contractors like Dussmann, these positive results hold out the prospect in a few years’ time of putting this technology to cost-effective use with suitably customized robot systems in order to make up for the growing shortage of qualified personnel.

Simple configurability and plug & play

The individual functionalities for robot-assisted cleaning will be presented at Automatica 2014. Implementation of the application scenario is based on a further development of the “Care-O-bot 3” mobile robot assistant, which was originally designed to provide assistance in a domestic setting. However, a modular software architecture, likewise developed as part of the project, made it possible for “Care-O-bot 3” to be quickly and easily transformed into a cleaning robot.

The same software architecture was used to realize the plug & play functionalities required for performing the cleaning task. This allows the robotic arm to be interchangeably equipped with functional attachments, such as a robotic hand or battery-powered vacuum cleaner. The new equipment is automatically detected by the control software. “The modular software architecture makes it possible to easily transfer the concept to a low-cost robot platform specially tailored to this particular application,” says Bormann.

AutoPnP
A standardized software architecture and modular middleware are what is needed to combine different robot systems within a common system while at the same time being quickly able to adapt them for different applications. In addition to the “Robot-assisted Cleaning” scenario, “Home Automation” and “Convertible Factory” are further applications for which the developed software architecture is used within the AutoPnP collaborative project.

The AutoPnP collaborative project stands for “Plug & Play for Automation Systems” and is sponsored by the German Ministry of Economics and Energy (BMWi).

Consortium partners
Fraunhofer IPA | fortiss GmbH | Technische Universität Berlin/DAI-Labor | Dussmann AG | Schunk GmbH | Festo AG | Festo Didactic GmbH & Co. KG

Hannover Trade Fair 2014
7 to 11 April 2014

Automatica – 6th International Trade Fair for Automation and Mechatronics
3 to 6 June 2014
New Trade Fair Centre Munich

Contact
Dipl.-Ing. Richard Bormann M. Sc., phone +49 711 970-1062, richard.bormann@ipa.fraunhofer.de

Weitere Informationen:

http://www.autopnp.com
http://www.ipa.fraunhofer.de
http://www.automatica-munich.com
http://www.hannovermesse.de

Jörg Walz | Fraunhofer-Institut

Further reports about: Automation Automatisierung Cleaning Demographic IPA Modular Produktionstechnik Trade vacuum

More articles from Trade Fair News:

nachricht OLEDs applied to paper-thin stainless steel
21.09.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht New VDI standards established for cleanroom technology
11.09.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>