Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mobile diagnostics by smartphone and image analysis for detecting antibiotic resistance

Fraunhofer FIT demonstrates a mobile wireless system that monitors the health of elderly people in their own homes, using miniature sensors, and also a novel optical system for detecting antibiotic resistance, which can determine in just two hours if bacteria react to a specific antibiotic.

At BIOTECHNICA 2013, Fraunhofer FIT demonstrates the first system that integrates three different sensors in one platform. A nano potentiostat measures biochemical information in a patient's assay, e.g. glucose, lactate or cholesterol levels. A fluorescence sensor is used to detect color-marked biomarkers.

MAS demonstrator.
Photo: Fraunhofer FIT

A SpO2 sensor monitors heart rate and arterial oxygen saturation. A smartphone app processes the data from the three sensors and transfers them to a server. For secure data communication, a Bluetooth connection with a specifically developed protocol is used.

"Our aim was to integrate, in one mobile device, several miniature sensors that measure relevant diagnostic parameters and communicate their data wirelessly", says Professor Harald Mathis, head of the department 'Biomolecular Optical Systems' of the Fraunhofer Institute for Applied Information Technology FIT.

As devices that measure biometrical data do not use standardized protocols, we developed a sensor platform that takes the data from the different sensors, processes them and sends them to a smartphone. The smartphone can then transmit the data to the patient's physician.

The system was developed by Fraunhofer FIT in cooperation with Charité and T-Systems Deutschland in the BMBF/EU-funded project Nanoelectronics for Mobile AAL Systems – MAS.

Fraunhofer FIT's second exhibit is an image analysis system for bacteria diagnostics. Antibiotic resistance is a growing threat to our health. Many antibiotics are losing their effectiveness. Unfortunately, there are no universal flash tests for antibiotic resistance. FIT's new system uses an optical process that can determine in just about two hours if bacteria react to a specific antibiotic.

Alex Deeg
Phone +49 2241 14-2208

Alex Deeg | Fraunhofer-Institut
Further information:

More articles from Trade Fair News:

nachricht Creating living spaces for people: The »Fraunhofer CityLaboratory« at BAU 2017
14.10.2016 | Fraunhofer-Gesellschaft

nachricht Reducing Weight through Laser-assisted Material Processing in Automobile Construction
13.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>