Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


LZH for the 10th Time at Photonics West: space lasers, fiber optics, single frequency lasers, ultrashort pulse lasers

This year will be the tenth time the LZH has been an exhibitor at the German Pavilion at the fair Photonics West (San Francisco, USA; 4-6 February 2014).

The Laser Development Department of the LZH will be presenting systems and components from the fields of space lasers, fiber optics, single frequency lasers and ultrashort pulse lasers in North Hall at stand 4601.

The new MOMA prototype model.

Since the first German Pavilion at Photonics West in 2004, it has developed into the largest stand there, presently with 58 exhibitors, and is certainly a crowd puller for visitors from all over the world. The organizers of the most important fair for lasers and photonics are expecting around 20,000 visitors and over 1,200 exhibitors.

Fresh from the labs: The new prototype of the MOMA-APM laser head for the Exomars Mission 2018

An important step in the preparations for looking for traces of organic substances on Mars during the Exomars Mission 2018 has been taken. The fundamental design of a flight model of a diode-pumped, Q-switched laser which emits nanosecond pulses in the UV range at a wavelength of 266 nm in outer space has been developed for the new prototype of the MOMA-APM laser head (Mars Organic Molecule Analyzers Advanced Prototype Model). This laser head, which was developed by the Space Technologies Group, will be used as the excitation source in the laser desorption mass spectrometer of the MOMA system, and it generates ions from organic molecules which cannot be vaporized. The ions can then examined in the MOMA mass spectrometer.

Premier at the fair: A wavelength multiplexer for 633 and 1550 nm

The Fiber Optics Group is presenting the newest fiber components and integrated fiber amplifiers, among which is a coupler for monomode fibers, a pump light combiner, and a fiber cladding mode stripper for the wavelengths between 0.6 and 2.1 µm. For the first time, a wavelength multiplexer consisting of two different fibers will be shown, which combines the wavelengths of 633 nm and 1550 nm. Combining the light fields of different fibers opens new applications, for example in medical technology.

Also, a highly integrated, ytterbium-doped fiber amplifier will be shown, which was developed for the detection of gravitational waves using interferometry, and which has a line width of only a few kilohertz, an emission wavelength of 1064 nm and an average output of over 200 W. Further application fields for this prototype are coherent beam combinations, laser metrology, and investigations on quantum optical phenomena, and nonlinear optics.

Infrared laser with a wavelength of 1.95 µm for the microprocessing of Plastics

A result of the EU project IMPROV (Innovative Mid-infrared high Power source for Resonant ablation of Organic photoVoltaic devices; Grant Agreement No. 257893) will be presented by the Ultrafast Photonics Group, the third prototype of the IMPROV laser with a wavelength of 1.95 µm. By using very narrow band gratings, the laser produces laser pulse lengths between 250 and 550 ps, and has a high quality spectrum. The system is an excellent laser source for downstream fiber amplifiers, and the pulses can be amplified without pre-time-stretching in the fiber. First experiments show that energy in the µJ range could be reached with a single fiber amplifier. Based on polarization-maintaining fibers, the laser output is stable, even when there are external influences, such as temperature fluctuations. Due to the pulse parameters, this laser system is excellent for nonlinear frequency conversion in the mid-infrared spectral range. Laser pulses in this spectral range can be used to selectively process organic layers, for example for organic photovoltaic solar cells.

Fiber lasers for a free fall

The Single-Frequency Lasers Group is presenting a 2 µm thulium fiber laser system, which was especially developed for use under micro-gravitational conditions in a fall tower, and which must withstand continuous dropping and impact from a height of 100 m. As commissioned by the Center of Applied Space Technology and Microgravity (ZARM) in Bremen, the LZH has developed this system for the PRIMUS-II project for the investigation of the equivalence principle. The equivalence principle dates back to Galileo Galilei and states that all physical bodies, independent of their chemical composition, size, form and mass, fall in the same manner in a vacuum, if other forces are not present.

LZH-Spinoff neoLase GmbH

A further exhibitor at the German Pavilion is the neoLase GmbH, a spinoff from the LZH, which will be presenting their MOPA laser system, a highly brilliant pico- and nano-second laser and amplifier modules.

Laser Zentrum Hannover e.V.
Lena Bennefeld
Hollerithallee 8
D-30419 Hannover, Germany
Tel.: +49 511 2788-238
Fax: +49 511 2788-100

Lena Bennefeld | Laser Zentrum Hannover e.V.
Further information:

More articles from Trade Fair News:

nachricht Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions
21.03.2018 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Development and Fast Analysis of 3D Printed HF Components
19.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>