Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser Welding of large Format Metal-Foam Sandwich Materials

20.04.2012
Scientists at the Laser Zentrum Hannover have developed a process for laser welding large scale, metal-foam sandwich materials, in which intermetallic phases do not occur. The project MESCHLAS aims at providing lightweight construction using sandwich technology, including the processing necessary to accomplish this.

Promising results for lightweight shipbuilding constructions: The Laser Zentrum Hannover e.V. (LZH) and project partners have laser welded a demonstrator for marine gear unit foundations made of steel and aluminum foam sandwich material. The LZH will present results at the Hannover Messe 2012, from April 23rd to 27th.


Laser fillet weld support (LZH)

Metal foams are highly porous, lightweight materials which, due to their cellular structure, can absorb energy in the form of vibrations and knocks, or noise. They are also heat resistant and provide insulation against electromagnetic waves. Metal foams, embedded in so-called sandwich constructions with aluminum or steel sheets, have a much higher bending stiffness than solid sheets, and due to their lower weight, are especially suitable for lightweight construction, or for highly stressed parts.

Large scale metal-foam sandwich materials are especially interesting for highly stressed ship structures such as foundations for machines, or for rudder structures, since weight reduction up to 20 % is possible. However, steel-aluminum lightweight structures are difficult to weld, due to inhomogeneity of the foam core, high stiffness, and the material thicknesses. One problem is, for example, the thermal effects of foaming the aluminum core in mixed sandwich materials, which can distort the material. Welding can also lead to intermetallic phases, causing cracks in the welding seam.

Scientists in the group “Joining and Cutting of Metals” have developed a process for laser welding large scale, metal-foam sandwich materials, in which intermetallic phases do not occur. Their investigations are in the framework of the joint project MESCHLAS. This process was recently tested on a gear unit foundation at Blohm + Voss Naval GmbH in Emden. It uses a transportable axis system and a mobile diode laser, which were provided by the companies Scientific and Efficient Technologies Ltd. (SET) und LASER on demand GmbH (LoD).

As the first step, mechanical preparation of the panel edges is necessary.

The aluminum foam which adheres to the steel top sheets (S235JR) is removed, thus preventing intermetallic phases. Then the components must be exactly positioned, forming a zero gap. Due to the size of the panels, this step is rather challenging. Following this, the sandwich panels are fixed using conventional spot welding. Laser welding of the butt welds and fillet welds then takes place, using a diode laser with a wavelength between 900 and 1030 nm and an output of 5 kW. Tests show that a gap of 0.6 mm can be bridged, and continuous weld seams are possible. Depending on the material thickness (up to 5 mm), speeds of 0.2 to 1.5 m/min. were possible.

The project MESCHLAS aims at providing lightweight construction using sandwich technology, including the processing necessary to accomplish this. The LZH is working together with the Fraunhofer Institute for Machine Tools and Forming Technology (IWU) and the companies Blohm + Voss Naval GmbH and Precitec Optronik GmbH to accomplish this goal. The project is financially supported by the Federal Ministry of Economics and Technology, based on a decision made by the German Parliament.

Be sure to visit us during the Hannover Messe, hall 17, stand C 55!

Contact:
Laser Zentrum Hannover e.V.
Michael Botts
Hollerithallee 8
D-30419 Hannover, Germany
Tel.: +49 511 2788-151
Fax: +49 511 2788-100
E-Mail: m.botts@lzh.de

The Laser Zentrum Hannover e.V. (LZH) carries out research and development in the field of laser technology and is supported by the Ministry of Economic Affairs, Labour and Transport of the State of Lower Saxony (Niedersächsisches Ministerium für Wirtschaft, Arbeit und Verkehr).

Michael Botts | idw
Further information:
http://www.lzh.de

More articles from Trade Fair News:

nachricht SYSTEMS INTEGRATION 2018 in Switzerland focuses on building blocks for industrial digitalization
20.11.2017 | IVAM Fachverband für Mikrotechnik

nachricht Medica 2017: New software enables early diagnosis of arteriosclerosis
06.11.2017 | Technische Universität Kaiserslautern

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>