Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser welding as an engine of innovation

30.04.2013
Lasers have long been able to do what traditional welding guns can. Nevertheless, many manufacturers did not dare employ the delicate technology in the raw environment of their assembly floors. At LASER 2013 (Hall C2, Booth 330), researchers will be demonstrating that lasers are robust enough to take over welding duties in fabrication.

Can lasers perform welds precisely and reliably in the midst of thundering machinery? The prototype of a new laser welder developed by an international team of researchers has now withstood the worst.


The new technology allows to project 400 images per second and create 40 three-dimensional images per second. © Fraunhofer IOF

At INTEGASA and ENSA, two companies in Spain that produce heat exchangers for heavy industry, the prototype proved itself precise and reliable under the difficult conditions of routine daily use.

“Manufacturers of heat exchangers were skeptical of laser anything until now,” confirms Patrick Herwig from the Fraunhofer Institute for Material and Beam Technology IWS in Dresden. TIG-welding guns have traditionally been employed in assembly operations for welding thousands of tubes to the perforated tube sheets. This process, which is based on arc-welding technology, is very time-intensive however.
The gun must be manually inserted into every hole and removed again after welding. As a result, the fabrication process is tedious, prolonged, and expensive. European manufacturers can hardly hold their ground today against competition from countries with low labor costs. Materials researchers, software specialists, production engineers and numerous users joined forces in the EU ORBITAL Project to jointly search for a cost-effective alternative. And found one.

Engineering that meets the most demanding requirements

Instead of conventional TIG-welding guns, a laser does the job – tube sheets and tubes are welded to one another rapidly, precisely and accurately. In seconds, the tube is circumferentially welded in place and the robotic arm transporting the welding head can move on to the next hole. The welding head is designed so it anchors itself in the holes and is seated there so firmly than not even vibrations of the shop floor can disrupt the welding process.
Precise guidance of the optical beam is handled by software-controlled mirrors that continuously direct it to the right location. Engineers and users from Italy, Spain, France, and Germany have been fine-tuning the process for two years. “The prototype we are exhibiting now at LASER 2013 facilitates the production of heat exchangers, and not just through its speed, but through its flexibility as well. It can even melt materials together that were considered difficult to weld until now,” according to Herwig, who was responsible for designing and testing the welding head during the EU project.

It is exactly these exotic combinations of materials that are needed by manufacturers of heat exchangers. They have to withstand extreme conditions in actual use. Heat exchangers are used in the chemical industry, ship engines, and power plants to remove heat from high-temperature, aggressive solutions of liquids. The tubing these liquids are passed through must therefore be corrosion-resistant.

However, the liquid in the tank outside the tubing that absorbs the heat is chemically inert. Cost-effective materials can be employed here. Where tank and tubing meet, differing materials must be joined. “Traditional welding techniques hit their limits here, whereas the job can be handled with the laser,” says Herwig. The researchers are confident that laser welding can be implemented so effectively in production that European companies remain competitive internationally.

PatrickHerwig | Fraunhofer-Institut
Further information:
http://www.fraunhofer.de/en/press/research-news/2013/april/laser-welding-as-an-engine-of-innovation.html

Further reports about: Laser arc-welding technology laser system power plant welding process

More articles from Trade Fair News:

nachricht Bug-proof communication with entangled photons
22.06.2017 | Fraunhofer-Gesellschaft

nachricht LZH at the LASER World of Photonics 2017: Light for Innovation
16.06.2017 | Laser Zentrum Hannover e.V.

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>