Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser Technology from Lower Saxony Goes West

20.01.2012
The Laser Zentrum Hannover e.V. is taking a new ultrashort pulse thulium fiber laser, two laser systems for use on far away planets and innovative fiber technology to the global North American meeting venue for optics and photonics in California.

The end of January is Photonics West time! Over 1150 exhibitors have registered for the most important US American photonics exhibition in the Moscone Center, San Francisco (CA). The Laser Zentrum Hannover e.V. (LZH) will also be there to present current innovations from the Laser Development Department to the 19000 international visitors expected to attend the exhibition.


A compact, mode-coupled fiber oscillators for structuring organic solar cells


A diode-pumped, solid-state laser especially designed for use in outer space

Simplified Production Processes for Microprocessing of Plastics
The Ultrafast Photonics Group is following new concepts for compact, mode-coupled fiber oscillators for structuring organic solar cells. This newest development will be shown to the public in the USA – a fully fiber-based ultrashort-pulsed thulium oscillator emitting at a wavelength of 1.98 µm. This systems works in the range of dissipative solitons with characteristically high pulse energies of 2 nJ (nanojoules) and repetition rates of 10 MHz, also with high quality chirped pulses with a pulse length of several tens of picoseconds. Mode coupling takes place using fiber-coupled, saturable absorber mirrors.

The oscillator serves as a seed source for fiber amplifiers working at a wavelength of 2 µm. This system, in turn, pumps a non-linear conversion step, generating radiation between 3 and 8 µm. The whole system, which is being realized within the framework of the EU project IMPROV (www.fp7project-improv.eu), will not only simplify the production of organic solar cells for use in photovoltaics, but also organic light-emitting diodes (OLED) and organic thin-film transistors (OTFT) with decidedly lower area losses.

Searching for Traces using pulsed, high-energy Lasers
The Space Technologies Group (SPT) is developing a diode-pumped, solid-state laser especially designed for use in outer space. Currently, a laser prototype for the planned ESA and NASA ExoMars joint mission is being further developed into a full-fledged flight model. The laser is one of the main elements of the ‘Mars Organic Molecule Analyzer’, called MOMA for short. Working with an emission wavelength of 266 nm and a laser pulse output of 250 µJ, this unit will be used to analyze organic material by means of Laser Desorption Mass Spectrometry (LD-MS), one of the methods that can be used to find traces of life on Mars. In order to be suitable for use in outer space, the scientists have given the laser a hermetic housing, using radiation resistant and low-emission materials, as well as providing components with special optical coatings. The laser runs with high repetition bursts of up to 100 Hz. The near-flight prototype, which has already passed vibration tests of up to 20 times gravitational acceleration, can be seen at the exhibition.
The second exhibit of the Space Technologies Group is a robust laser head that weighs only 35 g, for use in analyzing the distribution of elements on the surface of planets, or for analyzing materials on the earth, under extremely rough environmental conditions. The LIBS laser system is fitted with highly specialized electronic elements and works at the wavelength 1053 nm, with a pulse energy of > 1 mJ and a pulse repetition rate
High Output Fiber Components for the NIR Range
Various new developments are being shown by the Fiber Optics Group, for fiber integration of the continual and pulsed emitting laser sources in the wavelength range between 1 and 2 µm. Two pump and signal couplers are used, each with lateral overcoupling, so they can also be used for back-pumped units. However, harmful signals cannot enter the pump fibers, which could lead to destruction of the pump diodes. A coupler combines the pump wavelength of 795 nm with a signal wavelength of 2 µm, and can be used in thulium fiber lasers. The second was optimized for the wavelength range of 1 µm, and can couple 4 different laser diodes, each with a record output of 100 W, into a signal fiber.
The new monomode wavelength multiplexer for 1025/1064 nm has a specified output stability of over 26 W per channel, a value twice as high as other components currently available on the market. Using this unit, core-pumped set-ups with the highest outputs in the wavelength range around 1 µm are possible.

The LZH is in the north hall, on the most prominent collective German stand, with 418 m² and a total of 54 exhibitors.

We hope you visit us at the German Pavilion/ Stand 4601-23!

Contact:
Laser Zentrum Hannover e.V.
Michael Botts
Hollerithallee 8
D-30419 Hannover
Germany
Tel.: +49 511 2788-151
Fax: +49 511 2788-100
E-Mail: m.botts@lzh.de
http://www.lzh.de

The Laser Zentrum Hannover e.V. (LZH) carries out research and development in the field of laser technology and is supported by the Ministry of Economic Affairs, Labour and Transport of the State of Lower Saxony (Niedersächsisches Ministerium für Wirtschaft, Arbeit und Verkehr).

Michael Botts | idw
Further information:
http://www.lzh.de

More articles from Trade Fair News:

nachricht New Process Technology Unlocks Boost in Laser Productivity
18.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht OLED microdisplays as high-precision optical fingerprint sensors
09.05.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>