Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser Technology from Lower Saxony Goes West

20.01.2012
The Laser Zentrum Hannover e.V. is taking a new ultrashort pulse thulium fiber laser, two laser systems for use on far away planets and innovative fiber technology to the global North American meeting venue for optics and photonics in California.

The end of January is Photonics West time! Over 1150 exhibitors have registered for the most important US American photonics exhibition in the Moscone Center, San Francisco (CA). The Laser Zentrum Hannover e.V. (LZH) will also be there to present current innovations from the Laser Development Department to the 19000 international visitors expected to attend the exhibition.


A compact, mode-coupled fiber oscillators for structuring organic solar cells


A diode-pumped, solid-state laser especially designed for use in outer space

Simplified Production Processes for Microprocessing of Plastics
The Ultrafast Photonics Group is following new concepts for compact, mode-coupled fiber oscillators for structuring organic solar cells. This newest development will be shown to the public in the USA – a fully fiber-based ultrashort-pulsed thulium oscillator emitting at a wavelength of 1.98 µm. This systems works in the range of dissipative solitons with characteristically high pulse energies of 2 nJ (nanojoules) and repetition rates of 10 MHz, also with high quality chirped pulses with a pulse length of several tens of picoseconds. Mode coupling takes place using fiber-coupled, saturable absorber mirrors.

The oscillator serves as a seed source for fiber amplifiers working at a wavelength of 2 µm. This system, in turn, pumps a non-linear conversion step, generating radiation between 3 and 8 µm. The whole system, which is being realized within the framework of the EU project IMPROV (www.fp7project-improv.eu), will not only simplify the production of organic solar cells for use in photovoltaics, but also organic light-emitting diodes (OLED) and organic thin-film transistors (OTFT) with decidedly lower area losses.

Searching for Traces using pulsed, high-energy Lasers
The Space Technologies Group (SPT) is developing a diode-pumped, solid-state laser especially designed for use in outer space. Currently, a laser prototype for the planned ESA and NASA ExoMars joint mission is being further developed into a full-fledged flight model. The laser is one of the main elements of the ‘Mars Organic Molecule Analyzer’, called MOMA for short. Working with an emission wavelength of 266 nm and a laser pulse output of 250 µJ, this unit will be used to analyze organic material by means of Laser Desorption Mass Spectrometry (LD-MS), one of the methods that can be used to find traces of life on Mars. In order to be suitable for use in outer space, the scientists have given the laser a hermetic housing, using radiation resistant and low-emission materials, as well as providing components with special optical coatings. The laser runs with high repetition bursts of up to 100 Hz. The near-flight prototype, which has already passed vibration tests of up to 20 times gravitational acceleration, can be seen at the exhibition.
The second exhibit of the Space Technologies Group is a robust laser head that weighs only 35 g, for use in analyzing the distribution of elements on the surface of planets, or for analyzing materials on the earth, under extremely rough environmental conditions. The LIBS laser system is fitted with highly specialized electronic elements and works at the wavelength 1053 nm, with a pulse energy of > 1 mJ and a pulse repetition rate
High Output Fiber Components for the NIR Range
Various new developments are being shown by the Fiber Optics Group, for fiber integration of the continual and pulsed emitting laser sources in the wavelength range between 1 and 2 µm. Two pump and signal couplers are used, each with lateral overcoupling, so they can also be used for back-pumped units. However, harmful signals cannot enter the pump fibers, which could lead to destruction of the pump diodes. A coupler combines the pump wavelength of 795 nm with a signal wavelength of 2 µm, and can be used in thulium fiber lasers. The second was optimized for the wavelength range of 1 µm, and can couple 4 different laser diodes, each with a record output of 100 W, into a signal fiber.
The new monomode wavelength multiplexer for 1025/1064 nm has a specified output stability of over 26 W per channel, a value twice as high as other components currently available on the market. Using this unit, core-pumped set-ups with the highest outputs in the wavelength range around 1 µm are possible.

The LZH is in the north hall, on the most prominent collective German stand, with 418 m² and a total of 54 exhibitors.

We hope you visit us at the German Pavilion/ Stand 4601-23!

Contact:
Laser Zentrum Hannover e.V.
Michael Botts
Hollerithallee 8
D-30419 Hannover
Germany
Tel.: +49 511 2788-151
Fax: +49 511 2788-100
E-Mail: m.botts@lzh.de
http://www.lzh.de

The Laser Zentrum Hannover e.V. (LZH) carries out research and development in the field of laser technology and is supported by the Ministry of Economic Affairs, Labour and Transport of the State of Lower Saxony (Niedersächsisches Ministerium für Wirtschaft, Arbeit und Verkehr).

Michael Botts | idw
Further information:
http://www.lzh.de

More articles from Trade Fair News:

nachricht Innovative Infrared Emitters Optimize the Manufacture of Vehicle Interior Fittings Using Vacuum Lamination
01.08.2017 | Heraeus Noblelight GmbH

nachricht Bug-proof communication with entangled photons
22.06.2017 | Fraunhofer-Gesellschaft

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>