Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser Technology from Lower Saxony Goes West

20.01.2012
The Laser Zentrum Hannover e.V. is taking a new ultrashort pulse thulium fiber laser, two laser systems for use on far away planets and innovative fiber technology to the global North American meeting venue for optics and photonics in California.

The end of January is Photonics West time! Over 1150 exhibitors have registered for the most important US American photonics exhibition in the Moscone Center, San Francisco (CA). The Laser Zentrum Hannover e.V. (LZH) will also be there to present current innovations from the Laser Development Department to the 19000 international visitors expected to attend the exhibition.


A compact, mode-coupled fiber oscillators for structuring organic solar cells


A diode-pumped, solid-state laser especially designed for use in outer space

Simplified Production Processes for Microprocessing of Plastics
The Ultrafast Photonics Group is following new concepts for compact, mode-coupled fiber oscillators for structuring organic solar cells. This newest development will be shown to the public in the USA – a fully fiber-based ultrashort-pulsed thulium oscillator emitting at a wavelength of 1.98 µm. This systems works in the range of dissipative solitons with characteristically high pulse energies of 2 nJ (nanojoules) and repetition rates of 10 MHz, also with high quality chirped pulses with a pulse length of several tens of picoseconds. Mode coupling takes place using fiber-coupled, saturable absorber mirrors.

The oscillator serves as a seed source for fiber amplifiers working at a wavelength of 2 µm. This system, in turn, pumps a non-linear conversion step, generating radiation between 3 and 8 µm. The whole system, which is being realized within the framework of the EU project IMPROV (www.fp7project-improv.eu), will not only simplify the production of organic solar cells for use in photovoltaics, but also organic light-emitting diodes (OLED) and organic thin-film transistors (OTFT) with decidedly lower area losses.

Searching for Traces using pulsed, high-energy Lasers
The Space Technologies Group (SPT) is developing a diode-pumped, solid-state laser especially designed for use in outer space. Currently, a laser prototype for the planned ESA and NASA ExoMars joint mission is being further developed into a full-fledged flight model. The laser is one of the main elements of the ‘Mars Organic Molecule Analyzer’, called MOMA for short. Working with an emission wavelength of 266 nm and a laser pulse output of 250 µJ, this unit will be used to analyze organic material by means of Laser Desorption Mass Spectrometry (LD-MS), one of the methods that can be used to find traces of life on Mars. In order to be suitable for use in outer space, the scientists have given the laser a hermetic housing, using radiation resistant and low-emission materials, as well as providing components with special optical coatings. The laser runs with high repetition bursts of up to 100 Hz. The near-flight prototype, which has already passed vibration tests of up to 20 times gravitational acceleration, can be seen at the exhibition.
The second exhibit of the Space Technologies Group is a robust laser head that weighs only 35 g, for use in analyzing the distribution of elements on the surface of planets, or for analyzing materials on the earth, under extremely rough environmental conditions. The LIBS laser system is fitted with highly specialized electronic elements and works at the wavelength 1053 nm, with a pulse energy of > 1 mJ and a pulse repetition rate
High Output Fiber Components for the NIR Range
Various new developments are being shown by the Fiber Optics Group, for fiber integration of the continual and pulsed emitting laser sources in the wavelength range between 1 and 2 µm. Two pump and signal couplers are used, each with lateral overcoupling, so they can also be used for back-pumped units. However, harmful signals cannot enter the pump fibers, which could lead to destruction of the pump diodes. A coupler combines the pump wavelength of 795 nm with a signal wavelength of 2 µm, and can be used in thulium fiber lasers. The second was optimized for the wavelength range of 1 µm, and can couple 4 different laser diodes, each with a record output of 100 W, into a signal fiber.
The new monomode wavelength multiplexer for 1025/1064 nm has a specified output stability of over 26 W per channel, a value twice as high as other components currently available on the market. Using this unit, core-pumped set-ups with the highest outputs in the wavelength range around 1 µm are possible.

The LZH is in the north hall, on the most prominent collective German stand, with 418 m² and a total of 54 exhibitors.

We hope you visit us at the German Pavilion/ Stand 4601-23!

Contact:
Laser Zentrum Hannover e.V.
Michael Botts
Hollerithallee 8
D-30419 Hannover
Germany
Tel.: +49 511 2788-151
Fax: +49 511 2788-100
E-Mail: m.botts@lzh.de
http://www.lzh.de

The Laser Zentrum Hannover e.V. (LZH) carries out research and development in the field of laser technology and is supported by the Ministry of Economic Affairs, Labour and Transport of the State of Lower Saxony (Niedersächsisches Ministerium für Wirtschaft, Arbeit und Verkehr).

Michael Botts | idw
Further information:
http://www.lzh.de

More articles from Trade Fair News:

nachricht COMPAMED 2016 connected medical devices and people
23.11.2016 | IVAM Fachverband für Mikrotechnik

nachricht Successfully transferring Industrie 4.0 into reality
21.11.2016 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>