Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser-manufactured customized lenses

24.05.2016

The Fraunhofer Institute for Laser Technology ILT is presenting selected project results in the areas of laser material processing of glass optics and packaging at the 13th Optatec international trade fair in Frankfurt from June 7 to 9, 2016. Highlights include the freeformOPT software that can be used to calculate individual free-form optics, as well as new laser processes for shaping, polishing, structuring and assembling fused silica optics.

Scientists at Fraunhofer ILT in Aachen are researching new laser processes for shaping, polishing, structuring and assembling optics and components made of various optical glasses and fused silica.


Fused silica with a slit, made by processing with inverse laser drilling; thickness: 6.35 mm, angle of the undercut: approx. 10°.

Fraunhofer ILT, Aachen, Germany.


Structuring the reverse side to reduce the weight of optics; measurements: 20 mm x 30 mm x 8 mm, depth removed: 2 mm.

Fraunhofer ILT, Aachen, Germany.

One focus is on developing a completely laser-based digital process chain for producing aspheres and free-form optics. At the international trade fair for optical technologies, components and systems, scientists are presenting project results and demonstrators from the various areas of research.

Laser-based process chain for the production of free-form optics

To shape the form of the optics the glass is removed in layers with an ablation rate of up to several mm³/s. A subsequent laser polishing process smooths the surface by remelting a thin surface layer without removing material – at surface rates of up to 5 cm2/s. The result is a roughness extending into the subnanometer range. Through a final thin-layer removal, called laser beam figuring, layer thicknesses in the nanometer range can again be locally removed through an evaporation process (to ablation depths below 5 nm, with a lateral spatial resolution of less than 100 µm). This step is being developed to reduce any remaining long-wave roughnesses and form errors that cannot be removed during laser polishing.

Design of free-form optics

The freeformOPT software developed in Aachen allows various free-form optical surfaces to be calculated with over 100,000 degrees of freedom and also provides interfaces to CAD and optical software. The CAD drawings can be directly used on the appropriate production machines.

Geometrical freedom and economic efficiency through the use of lasers

In contrast to conventional grinding and polishing processes, processes in contactless laser processing are largely wear-free. Low spot diameters and controllable intensity profiles permit a high degree of geometrical freedom for surfaces. Process cycle times are short and almost independent of the complexity of the surface, be it sphere, asphere or free-form optic.

Possible areas of application for optical elements produced in this way can be found, for instance, in interior and exterior lighting, car manufacturing or laser optics. By structuring the reverse side of optical components, the weight of components can be reduced for, say, lightweight designs.

Wide variety of laser material processing at Optatec 2016

With inverse laser drilling, holes are drilled into dielectric materials with high aspect ratios (~1:200). One application for this process is drilling holes that measure 100 µm in mirror substrates without causing conchoidal fractures. This is used to overlap or separate beams, but also to structure photonic fiber preforms with a high degree of geometrical freedom.

Robust optomechanical components that will be applied in pulsed lasers for satellite-based climate research will also be on display. Special tilt stabilities of individual key components are achieved through solder joints. In addition, foregoing the use of organic substances achieves low outgassing rates and thus long service lives.

With glass frit bonding, the spatially restricted injection of laser light into the joint area is used to obtain homogenous and crack-free joints, making it possible to encapsulate sensitive OLED layers or microsensors. Various applications of the process up to a size of 340 mm x 340 mm are shown as examples.

Our experts at Optatec 2016

At the international trade fair in Frankfurt, Fraunhofer ILT will be at the joint Fraunhofer booth (Hall 3.0, D50) to present current research results. Around 570 exhibitors will also be at the trade fair to display innovations and new developments in the areas of optical technologies, components and systems.

Contact

Dipl.-Phys., Dipl.-Volksw. Dominik Esser
Group Solid State Lasers
Phone +49 241 8906-437
dominik.esser@ilt.fraunhofer.de

Dr.-Ing. Edgar Willenborg
Group Manager Polishing
Phone +49 241 8906-213
edgar.willenborg@ilt.fraunhofer.de

Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen, Germany

Weitere Informationen:

http://www.ilt.fraunhofer.de/en.html

Petra Nolis | Fraunhofer-Institut für Lasertechnik ILT

More articles from Trade Fair News:

nachricht BAM@Hannover Messe: innovative 3D printing method for space flight
24.04.2018 | Bundesanstalt für Materialforschung und -prüfung (BAM)

nachricht Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018
23.04.2018 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>