Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser-manufactured customized lenses

24.05.2016

The Fraunhofer Institute for Laser Technology ILT is presenting selected project results in the areas of laser material processing of glass optics and packaging at the 13th Optatec international trade fair in Frankfurt from June 7 to 9, 2016. Highlights include the freeformOPT software that can be used to calculate individual free-form optics, as well as new laser processes for shaping, polishing, structuring and assembling fused silica optics.

Scientists at Fraunhofer ILT in Aachen are researching new laser processes for shaping, polishing, structuring and assembling optics and components made of various optical glasses and fused silica.


Fused silica with a slit, made by processing with inverse laser drilling; thickness: 6.35 mm, angle of the undercut: approx. 10°.

Fraunhofer ILT, Aachen, Germany.


Structuring the reverse side to reduce the weight of optics; measurements: 20 mm x 30 mm x 8 mm, depth removed: 2 mm.

Fraunhofer ILT, Aachen, Germany.

One focus is on developing a completely laser-based digital process chain for producing aspheres and free-form optics. At the international trade fair for optical technologies, components and systems, scientists are presenting project results and demonstrators from the various areas of research.

Laser-based process chain for the production of free-form optics

To shape the form of the optics the glass is removed in layers with an ablation rate of up to several mm³/s. A subsequent laser polishing process smooths the surface by remelting a thin surface layer without removing material – at surface rates of up to 5 cm2/s. The result is a roughness extending into the subnanometer range. Through a final thin-layer removal, called laser beam figuring, layer thicknesses in the nanometer range can again be locally removed through an evaporation process (to ablation depths below 5 nm, with a lateral spatial resolution of less than 100 µm). This step is being developed to reduce any remaining long-wave roughnesses and form errors that cannot be removed during laser polishing.

Design of free-form optics

The freeformOPT software developed in Aachen allows various free-form optical surfaces to be calculated with over 100,000 degrees of freedom and also provides interfaces to CAD and optical software. The CAD drawings can be directly used on the appropriate production machines.

Geometrical freedom and economic efficiency through the use of lasers

In contrast to conventional grinding and polishing processes, processes in contactless laser processing are largely wear-free. Low spot diameters and controllable intensity profiles permit a high degree of geometrical freedom for surfaces. Process cycle times are short and almost independent of the complexity of the surface, be it sphere, asphere or free-form optic.

Possible areas of application for optical elements produced in this way can be found, for instance, in interior and exterior lighting, car manufacturing or laser optics. By structuring the reverse side of optical components, the weight of components can be reduced for, say, lightweight designs.

Wide variety of laser material processing at Optatec 2016

With inverse laser drilling, holes are drilled into dielectric materials with high aspect ratios (~1:200). One application for this process is drilling holes that measure 100 µm in mirror substrates without causing conchoidal fractures. This is used to overlap or separate beams, but also to structure photonic fiber preforms with a high degree of geometrical freedom.

Robust optomechanical components that will be applied in pulsed lasers for satellite-based climate research will also be on display. Special tilt stabilities of individual key components are achieved through solder joints. In addition, foregoing the use of organic substances achieves low outgassing rates and thus long service lives.

With glass frit bonding, the spatially restricted injection of laser light into the joint area is used to obtain homogenous and crack-free joints, making it possible to encapsulate sensitive OLED layers or microsensors. Various applications of the process up to a size of 340 mm x 340 mm are shown as examples.

Our experts at Optatec 2016

At the international trade fair in Frankfurt, Fraunhofer ILT will be at the joint Fraunhofer booth (Hall 3.0, D50) to present current research results. Around 570 exhibitors will also be at the trade fair to display innovations and new developments in the areas of optical technologies, components and systems.

Contact

Dipl.-Phys., Dipl.-Volksw. Dominik Esser
Group Solid State Lasers
Phone +49 241 8906-437
dominik.esser@ilt.fraunhofer.de

Dr.-Ing. Edgar Willenborg
Group Manager Polishing
Phone +49 241 8906-213
edgar.willenborg@ilt.fraunhofer.de

Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen, Germany

Weitere Informationen:

http://www.ilt.fraunhofer.de/en.html

Petra Nolis | Fraunhofer-Institut für Lasertechnik ILT

More articles from Trade Fair News:

nachricht COMPAMED 2016 connected medical devices and people
23.11.2016 | IVAM Fachverband für Mikrotechnik

nachricht Successfully transferring Industrie 4.0 into reality
21.11.2016 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>