Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Laser cladding now four times faster

Hybrid technology makes laser powder cladding even faster and more reliable.

At the LAM in Houston (Texas, USA) and the LASYS in Stuttgart (Germany), Fraunhofer IWS Dresden and Laserline are presenting a highly productive, compact coaxial head for laser assisted cladding.

The induction module is arranged coaxially around the nozzle so that it’s fully omnidirectional. This arrangement of the hybrid cladding head offers increased performance, high ease of use, easy automation and high robustness.

Combining a solid-state laser (4 kW) with a locally integrated additional induction module (14 kW), the patented COAXpowerline head by Fraunhofer IWS enables deposition rates of 8 kg metallic powder per hour. Up to four times higher rates can be provided compared with a single 4 kW solid-state laser. Thus, even small lasers can reach deposition rates in the range of plasma transferred arc (PTA) surfacing, without undercuts and at mixing degrees below 8 %.

If one dares a view into the near future, technically and economically meaningful upper limits are to be expected at 10 kW diode laser power and 40 kW induction power. With this combination, deposition rates of up to 30 kg metallic powder per hour could be realized. The researchers of Fraunhofer IWS are looking forward to take on this challenging task.

With the COAXpowerline head the energetic overall efficiency can already be increased by more a factor of two. Where otherwise a 10 KW laser would be necessary, now a 4 kW laser will be sufficient! Thus, the investment costs per kW of total power can be reduced by at least 50%.

A further effect that characterizes the new system is the wider range of materials that can be processed. Simultaneous base material preheating enables the crack-free deposition of especially hard and wear resistant materials. Coatings with a hardness of up to 64 HRC can be reached precisely.

Like all COAXn systems, COAXpowerline provides omnidirectional energy and weld deposit feeding. Yet equipped with the additional induction module the cladding head remains very compact and can be applied regardless the geometry and size of the component. Furthermore, the camera based temperature control system ?E-MAqS? by Fraunhofer IWS can be coaxially integrated in the beam path. This on-line process control represents another unique feature in the market.

For more than twenty years, the Fraunhofer IWS has been developing processing heads for continuous powder and wire feeding. With these components, users are provided with advanced tools for laser cladding applications. During the last ten years, more than 80 systems have found their way into industrial production or research worldwide.

Your contact for further information:

Fraunhofer Institute for Material and Beam Technology IWS Dresden
(Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS Dresden)
01277 Dresden, Winterbergstraße 28, Germany
Dr. Steffen Nowotny (System Technology Laser Cladding)
Phone: +49 (0) 351 83391 3241
Fax: +49 (0) 351 83391 3300
Dr. Ralf Jäckel (Public Relations)
Phone: +49 (0) 351 83391 3444
Fax: +49 (0) 351 83391 3300

Dr. Ralf Jaeckel | idw
Further information:

More articles from Trade Fair News:

nachricht Creating living spaces for people: The »Fraunhofer CityLaboratory« at BAU 2017
14.10.2016 | Fraunhofer-Gesellschaft

nachricht Reducing Weight through Laser-assisted Material Processing in Automobile Construction
13.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>