Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser cladding now four times faster

28.04.2010
Hybrid technology makes laser powder cladding even faster and more reliable.

At the LAM in Houston (Texas, USA) and the LASYS in Stuttgart (Germany), Fraunhofer IWS Dresden and Laserline are presenting a highly productive, compact coaxial head for laser assisted cladding.

The induction module is arranged coaxially around the nozzle so that it’s fully omnidirectional. This arrangement of the hybrid cladding head offers increased performance, high ease of use, easy automation and high robustness.

Combining a solid-state laser (4 kW) with a locally integrated additional induction module (14 kW), the patented COAXpowerline head by Fraunhofer IWS enables deposition rates of 8 kg metallic powder per hour. Up to four times higher rates can be provided compared with a single 4 kW solid-state laser. Thus, even small lasers can reach deposition rates in the range of plasma transferred arc (PTA) surfacing, without undercuts and at mixing degrees below 8 %.

If one dares a view into the near future, technically and economically meaningful upper limits are to be expected at 10 kW diode laser power and 40 kW induction power. With this combination, deposition rates of up to 30 kg metallic powder per hour could be realized. The researchers of Fraunhofer IWS are looking forward to take on this challenging task.

With the COAXpowerline head the energetic overall efficiency can already be increased by more a factor of two. Where otherwise a 10 KW laser would be necessary, now a 4 kW laser will be sufficient! Thus, the investment costs per kW of total power can be reduced by at least 50%.

A further effect that characterizes the new system is the wider range of materials that can be processed. Simultaneous base material preheating enables the crack-free deposition of especially hard and wear resistant materials. Coatings with a hardness of up to 64 HRC can be reached precisely.

Like all COAXn systems, COAXpowerline provides omnidirectional energy and weld deposit feeding. Yet equipped with the additional induction module the cladding head remains very compact and can be applied regardless the geometry and size of the component. Furthermore, the camera based temperature control system ?E-MAqS? by Fraunhofer IWS can be coaxially integrated in the beam path. This on-line process control represents another unique feature in the market.

For more than twenty years, the Fraunhofer IWS has been developing processing heads for continuous powder and wire feeding. With these components, users are provided with advanced tools for laser cladding applications. During the last ten years, more than 80 systems have found their way into industrial production or research worldwide.

Your contact for further information:

Fraunhofer Institute for Material and Beam Technology IWS Dresden
(Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS Dresden)
01277 Dresden, Winterbergstraße 28, Germany
Dr. Steffen Nowotny (System Technology Laser Cladding)
Phone: +49 (0) 351 83391 3241
Fax: +49 (0) 351 83391 3300
E-mail: steffen.nowotny@iws.fraunhofer.de
Dr. Ralf Jäckel (Public Relations)
Phone: +49 (0) 351 83391 3444
Fax: +49 (0) 351 83391 3300
E-mail: ralf.jaeckel@iws.fraunhofer.de

Dr. Ralf Jaeckel | idw
Further information:
http://www.iws.fraunhofer.de
http://www.iws.fraunhofer.de/presse/presse.html

More articles from Trade Fair News:

nachricht Innovative Infrared Emitters Optimize the Manufacture of Vehicle Interior Fittings Using Vacuum Lamination
01.08.2017 | Heraeus Noblelight GmbH

nachricht Bug-proof communication with entangled photons
22.06.2017 | Fraunhofer-Gesellschaft

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>