Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IPAnema – cable-driven robot for intralogistics

27.03.2014

Their very large workspaces, good mobility and high payload capacity allow cable-driven robots to meet high requirements. Developed by Fraunhofer IPA, the IPAnema cable-driven robot is an innovative robot system featuring state-of-the-art control techniques and proven components. At Automatica 2014, scientists from Fraunhofer IPA will present a comprehensive overview of the strengths and application areas of this new robot technology for inspection, manipulation and assembly.

With its eight cables and moving platform instead of large articulated-arm robots and area gantries, the platform with grippers appears at first sight to fly through the air. Yet if one tries to move the platform, it refuses to budge.


Schematic diagram of the IPAnema parallel cable-driven robot: the end effector is controlled and moved by eight cables. Source: Fraunhofer IPA

No evasive action, no moving backwards and forwards – instead there is lightweight construction in perfection. Fraunhofer IPA is developing and testing an entirely new approach to the automation of materials handling using robots. IPAnema uses cables that are driven by a number of winches and move an end effector in three dimensions. This new robot kinematics allows free and fully controllable motion.

Cable robots are superior to conventional industrial robots by between one and two orders of magnitude in terms of payload capacity and workspace area. Energy-efficient, cost-effective and modular, they make mobile handling and assembly systems a possibility.

“Cable robots can be used to automate production and handling tasks that cannot be performed by conventional robots for technical or economic reasons. Very short cycle times are possible in the case of small payloads. Cables can transmit the drive forces almost without loss to the mobile robot platform,” explains Andreas Pott from the Robot and Assistive Systems department at Fraunhofer IPA.

Areas of application

With its IPAnema cable-driven robot, Fraunhofer IPA offers a technologically novel approach to efficient and flexible handling. The robot can easily be adapted to meet the particular requirements of an application. Payload, workspace and cycle time can be tailored to the relevant task, allowing the robot to operate with maximum efficiency.

With many users expressing the wish for the high picking performance of delta robots to be extended to larger components or longer transport distances, cable robots are in a position to set new standards in picking and placing. In addition, they are capable of loading racks with small parcels. If equipped with crane winches, cable robot technology can also be employed to handle loads weighing several tonnes.

Similar to the cable cameras for sporting broadcasts, cable robots are designed for use in manufacturing facilities, where they are suitable for the automation of production processes involving very large components, such as wind turbine rotor blades, aircraft fuselages, ships’ hulls or large weldments. Cable robots can serve to position and move the tool that is then used for lamination, grinding, polishing, cleaning or spray-painting.

At Automatica 2014, Fraunhofer IPA will present applications of this new robot technology in the areas of inspection, handling and assembly. “Our special focus is on system manufacturers and system integrators of robotics, automation and intralogistics. The technologies developed at Fraunhofer can be used to collaboratively implement new projects and develop innovative products,” says Pott.

More at Automatica – 6th International Trade Fair for Automation and Mechatronics
3 to 6 June 2014
New Trade Fair Centre Munich
Hall A4 | Stand 530

Contact:
Juniorprof. Dr.-Ing. Andreas Pott, phone +49 711 970-1221

Weitere Informationen:

http://www.automatica-munich.com
http://www.ipa.fraunhofer.de

Jörg Walz | Fraunhofer-Institut

Further reports about: Automatisierung Cable IPA Produktionstechnik Trade conventional explains materials small technologies

More articles from Trade Fair News:

nachricht High Resolution Laser Structuring of Thin Films at LOPEC 2017
21.03.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Open ecosystem for smart assistance systems
20.03.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>