Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Interzum 2015: WPC furniture with low flammability

04.05.2015

Wood is a popular material in interior design, but its water absorbency limits its use in bathrooms, where natural wood easily becomes discolored or moldy. Fraunhofer scientists and partners have developed a wood-polymer composite material for furniture that is resistant to humidity and has low flammability.

Resource-saving wood-polymer composites (WPCs) are the latest trend in materials for garden furniture and other outdoor applications, especially for terrace decking and also for weatherboarding and fencing panels.


WPC board without (above) and with (below) flame-proofing.

© Fraunhofer WKI

As part of the EU-sponsored LIMOWOOD project, researchers at the Fraunhofer Institute for Wood Research, Wilhelm-Klauditz-Institut WKI in Braunschweig are now collaborating with industrial partners in Belgium, Spain, France and Germany on the development of materials suitable for pressing into moisture-resistant WPC boards for indoor furniture manufacturing.

These boards are composed of around 60 percent wood particles and 40 percent thermoplastic material, generally polypropylene or polyethylene. Both wood and plastic components can be sourced from recycling streams.

The wood component in WPC boards can be replaced by other lignocellulose products derived from the fibrous part of plants such as hemp or cotton, or the husks of rice grains and sunflower seeds. All of these materials are 100-percent recyclable. Moreover, the pressed WPC boards produced by the WKI researchers are formaldehyde-free.

“The controversial question of formaldehyde emissions due to the binder used in conventional pressed wood products is therefore not an issue in this case,” says WKI research scientist Dr. Arne Schirp.

Tests prove low flammability of WPC boards

By choosing appropriate additives, the researchers were able to enhance the fire-retardant properties of their WPC boards. They initially developed their formula on a laboratory scale, using commercially available, halogen-free fire retardants which were added to the wood-polymer mixture during the melt phase.

The first step involved determining the limiting oxygen index of the item under test: this parameter defines the behavior of plastics or wood-filled plastic compounds when exposed to flames. It represents the minimum concentration of oxygen at which the material will continue to burn after catching fire. The higher this value, the lower the material’s flammability. Schirp and his colleagues obtained the best results with a combination of fire retardants such as red phosphorus and expanded graphite.

The limiting oxygen index of WPC boards treated in this way extends up to 38 percent, provided the wood particles they contained were also flame-proofed. By comparison, the limiting oxygen index of a standard wood particle board is 27 percent, and that of an untreated WPC board is 19 percent. Even in a single-flame source test, in which a Bunsen burner is held against the test sample, the treated WPC boards demonstrated a high fire resistance. Even after 300 seconds’ exposure, the boards didn’t catch fire. By contrast, the reference samples – of a standard wood particle board and an untreated WPC board – caught fire and continued to burn.

Another particular feature of the new WPC material is that it absorbs very little water and is thus highly suitable for use in bathrooms and kitchens. Even after being immersed in boiling water for five hours, the material emerges intact, whereas conventional wood particle board was completely destroyed by this test. The only limiting factor on applications of WPC is its inability to support high static loads. But even here, it has been possible to increase its bending strength to a level that far exceeds that of conventional particle board by utilizing a judicious mix of component materials.

Wood-polymer composites can be produced in many ways. The most commonly used processes are injection molding and extrusion, in which the various components – wood fibers, thermoplastic materials, and additives – are melted under high pressure at a high temperature and formed in a continuous mold. Arne Schirp’s team has placed its focus on press technology, because it is the best way to produce boards for use in furniture construction.

“The resulting boards have the same visual appeal as all-wood products and can be glued or screwed together to produce attractive furniture. They’re suitable for all decorative, non-loadbearing elements.” But there are many other applications for wood-polymer composites, including exterior weatherboarding of buildings, the construction of trade-show booths, and interior fittings for houses and ships.

Through their development work, the partners in the LIMOWOOD project aim to fill the gap between the high and low ends of the furniture market, which ranges between expensive and not necessarily ecologically sound materials and cheap products made of particle or fiber board, which at present are mainly produced using formaldehyde-based binders. The WKI researchers will be presenting prototypes of their flame-resistant WPC boards at the Interzum trade show in Cologne from May 5 to 8 (Boulevard, B077).

Simone Peist | Fraunhofer Forschung Kompakt
Further information:
http://www.fraunhofer.de/en/press/research-news/2015/may/WPC-furniture-with-low-flammability.html

More articles from Trade Fair News:

nachricht ILA 2018: Cost-effective carbon fibers for light-weight construction
18.04.2018 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Fraunhofer IDMT presents method for airborne-sound based quality assurance
18.04.2018 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

Im Focus: Stronger evidence for a weaker Atlantic overturning

The Atlantic overturning – one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards – is weaker today than any time before in more than 1000 years. Sea surface temperature data analysis provides new evidence that this major ocean circulation has slowed down by roughly 15 percent since the middle of the 20th century, according to a study published in the highly renowned journal Nature by an international team of scientists. Human-made climate change is a prime suspect for these worrying observations.

“We detected a specific pattern of ocean cooling south of Greenland and unusual warming off the US coast – which is highly characteristic for a slowdown of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Improved stability of plastic light-emitting diodes

19.04.2018 | Power and Electrical Engineering

Enduring cold temperatures alters fat cell epigenetics

19.04.2018 | Life Sciences

New capabilities at NSLS-II set to advance materials science

18.04.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>