Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Interzum 2015: WPC furniture with low flammability

04.05.2015

Wood is a popular material in interior design, but its water absorbency limits its use in bathrooms, where natural wood easily becomes discolored or moldy. Fraunhofer scientists and partners have developed a wood-polymer composite material for furniture that is resistant to humidity and has low flammability.

Resource-saving wood-polymer composites (WPCs) are the latest trend in materials for garden furniture and other outdoor applications, especially for terrace decking and also for weatherboarding and fencing panels.


WPC board without (above) and with (below) flame-proofing.

© Fraunhofer WKI

As part of the EU-sponsored LIMOWOOD project, researchers at the Fraunhofer Institute for Wood Research, Wilhelm-Klauditz-Institut WKI in Braunschweig are now collaborating with industrial partners in Belgium, Spain, France and Germany on the development of materials suitable for pressing into moisture-resistant WPC boards for indoor furniture manufacturing.

These boards are composed of around 60 percent wood particles and 40 percent thermoplastic material, generally polypropylene or polyethylene. Both wood and plastic components can be sourced from recycling streams.

The wood component in WPC boards can be replaced by other lignocellulose products derived from the fibrous part of plants such as hemp or cotton, or the husks of rice grains and sunflower seeds. All of these materials are 100-percent recyclable. Moreover, the pressed WPC boards produced by the WKI researchers are formaldehyde-free.

“The controversial question of formaldehyde emissions due to the binder used in conventional pressed wood products is therefore not an issue in this case,” says WKI research scientist Dr. Arne Schirp.

Tests prove low flammability of WPC boards

By choosing appropriate additives, the researchers were able to enhance the fire-retardant properties of their WPC boards. They initially developed their formula on a laboratory scale, using commercially available, halogen-free fire retardants which were added to the wood-polymer mixture during the melt phase.

The first step involved determining the limiting oxygen index of the item under test: this parameter defines the behavior of plastics or wood-filled plastic compounds when exposed to flames. It represents the minimum concentration of oxygen at which the material will continue to burn after catching fire. The higher this value, the lower the material’s flammability. Schirp and his colleagues obtained the best results with a combination of fire retardants such as red phosphorus and expanded graphite.

The limiting oxygen index of WPC boards treated in this way extends up to 38 percent, provided the wood particles they contained were also flame-proofed. By comparison, the limiting oxygen index of a standard wood particle board is 27 percent, and that of an untreated WPC board is 19 percent. Even in a single-flame source test, in which a Bunsen burner is held against the test sample, the treated WPC boards demonstrated a high fire resistance. Even after 300 seconds’ exposure, the boards didn’t catch fire. By contrast, the reference samples – of a standard wood particle board and an untreated WPC board – caught fire and continued to burn.

Another particular feature of the new WPC material is that it absorbs very little water and is thus highly suitable for use in bathrooms and kitchens. Even after being immersed in boiling water for five hours, the material emerges intact, whereas conventional wood particle board was completely destroyed by this test. The only limiting factor on applications of WPC is its inability to support high static loads. But even here, it has been possible to increase its bending strength to a level that far exceeds that of conventional particle board by utilizing a judicious mix of component materials.

Wood-polymer composites can be produced in many ways. The most commonly used processes are injection molding and extrusion, in which the various components – wood fibers, thermoplastic materials, and additives – are melted under high pressure at a high temperature and formed in a continuous mold. Arne Schirp’s team has placed its focus on press technology, because it is the best way to produce boards for use in furniture construction.

“The resulting boards have the same visual appeal as all-wood products and can be glued or screwed together to produce attractive furniture. They’re suitable for all decorative, non-loadbearing elements.” But there are many other applications for wood-polymer composites, including exterior weatherboarding of buildings, the construction of trade-show booths, and interior fittings for houses and ships.

Through their development work, the partners in the LIMOWOOD project aim to fill the gap between the high and low ends of the furniture market, which ranges between expensive and not necessarily ecologically sound materials and cheap products made of particle or fiber board, which at present are mainly produced using formaldehyde-based binders. The WKI researchers will be presenting prototypes of their flame-resistant WPC boards at the Interzum trade show in Cologne from May 5 to 8 (Boulevard, B077).

Simone Peist | Fraunhofer Forschung Kompakt
Further information:
http://www.fraunhofer.de/en/press/research-news/2015/may/WPC-furniture-with-low-flammability.html

More articles from Trade Fair News:

nachricht Functional films and efficient coating processes
14.02.2017 | Fraunhofer-Gesellschaft

nachricht Nanotechnology for life sciences and smart products: international innovations with IVAM in Tokyo
07.02.2017 | IVAM Fachverband für Mikrotechnik

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>