Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

INTERGEO 2010: High-speed Laser Scanners for Railways and Roads

05.11.2010
Fraunhofer IPM had extremely fast laser scanners on show at the INTERGEO 2010 trade fair in Cologne, Germany. These eye-safe high-tech systems can record more than one million measuring points per second, measuring their distances down to a millimeter if required by customers or the application.

At INTERGEO 2010, the Freiburg based Fraunhofer Institute for Physical Measurement Techniques IPM had the latest developments in the field of fast distance measuring with laser scanners on show.

Apart from their outstanding scientific expertise, the measurement technology specialists also presented their years of experience in building complete system solutions. In recent years Fraunhofer IPM has acquired numerous customers worldwide thanks to the institution’s tailor-made system solutions, particularly for railway-specific applications.

Mobile mapping applications are growing in relevance in the road transport arena. This is where the fast, accurate, and eye-safe laser scanners from Fraunhofer IPM can prove their strengths as well.

New systems for railways

There are two different ways that laser scanners can contribute to smoothly flowing railway traffic: For mobile applications, the scanner is mounted on the train and measures the desired position data of objects near the track while moving past them. For stationary applications, the laser scanner remains at a fixed position at a monitoring station next to the track and measures the geometries of passing trains.

* Contact wire position recording: Recording the position of the contact wire is a common application for use on inspection cars. Today, state-of-the-art complete systems from Fraunhofer IPM record 400 measurement profiles per second. In this way, at a speed of 100 km/h, the desired position data can be obtained for up to four contact wires simultaneously at intervals of 7 cm, along with online analyses.

* Detecting objects and structures near the rail track: Another mobile application serves to detect objects and structures near the rail track, such as platforms, tunnels, or bridges. The required position and safety clearance data are recorded with the help of a circular scanner mounted on the front of the inspection train. Fraunhofer IPM's basic scanner uses one laser beam and a scan frequency of 200 Hz, while the high-speed version has two laser beams and a scan frequency of more than 550 Hz.

* Train monitoring: Train monitoring performed directly in the course of normal railway operations can increase rail track safety significantly – particularly in sensitive track sections such as tunnels or bridges. To this end, monitoring stations are equipped with laser scanners from Fraunhofer IPM at suitable places alongside the track. Passing cars together with their freight can then be checked for geometric irregularities with 800 measurements per second. This means that at a speed of 100 km/h, the train's geometry is measured at intervals of around 3 cm.

Road data – a new application

Mobile mapping vehicles were also an important subject at INTERGEO 2010. These are measuring vehicles that record the road and its surroundings. Fraunhofer IPM has developed special high-resolution scanners for this application that scan the road surface. These so-called pavement scanners measure elements such as ruts, transverse grooves, or frost cracks with a view to obtaining data on pavement quality. Mounted on a vehicle at a height of around 3 m above road level, the laser scanner is easily capable of recording road surface widths of 4 m while delivering a resolution of less than 1 mm.

About Fraunhofer IPM
The Fraunhofer Institute for Physical Measurement Techniques IPM develops and implements turn-key optical sensor and imaging systems. These mostly laser-based systems combine optical, mechanical, electronic and software components to create perfect solutions of robust design that are individually tailored to suit the conditions at the site of deployment. In the field of thermoelectrics, the institute occupies a leading position in materials research, simulation, and systems design. In thin film technology, Fraunhofer IPM works on materials, production processes, and systems; semiconductor gas sensors form a further field of activity.
Your contact:
Dr. Heinrich Höfler
Head of Department Optical Measurement for Production
Head of Railway Measurement
Phone +49 761 8857-173
heinrich.hoefler@ipm.fraunhofer.de

Holger Kock | Fraunhofer-Gesellschaft
Further information:
http://www.ipm.fraunhofer.de
http://www.ipm.fraunhofer.de/fhg/ipm_en/solutions_services/railroad_meas_tech/index.jsp

More articles from Trade Fair News:

nachricht COMPAMED 2017: New manufacturing processes for customized products
06.12.2017 | IVAM Fachverband für Mikrotechnik

nachricht SYSTEMS INTEGRATION 2018 in Switzerland focuses on building blocks for industrial digitalization
20.11.2017 | IVAM Fachverband für Mikrotechnik

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>