Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Interactive simulator for vehicle drivers

07.03.2014

Maximize mileage, safety, or operating life? Driving behavior behind the wheel has a big influence on the vehicle. Fraunhofer researchers have developed a driving simulator designed to make the „human factor“ more calculable for vehicle engineers.

Simulations are an important development tool in the automobile and utility vehicle industries – they enable engineers to see into the future. The properties of vehicle components, such as how they respond in an accident, their reliability, or their energy efficiency can be investigated using simulations before the first component is manufactured.


Almost like real life: the vehicle simulator at Fraunhofer ITWM has 18 projectors that throw their images up on a huge dome. The vehicle interior can simulate nearly every driving situation.

© Fraunhofer ITWM

To continue to maintain the prediction power of the results, however, all of the influences that the vehicle is exposed to later on in actual operation must be taken into account – including those of drivers and operators.

Researchers at the Fraunhofer Institute for Industrial Mathematics ITWM in Kaiserslautern, Germany, have developed an interactive driving simulator using RODOS (robot-based driving and operation simulator) with which realistic interaction between human and vehicle can be analyzed. “Driving behavior is a key factor that is often insufficiently accounted for in computational models,” according to Dr. Klaus Dreßler of ITWM.

No doubt there are algorithms that are supposed to represent the “human factor” in simulations – however, these do not properly reflect the complexity of human behavior. For this reason, researchers at ITWM have shifted to a hybrid design for simulation. Hybrid here means a real person interacts with a simulation environment – a well-known example of this is a flight simulator, in which pilots regularly practice extreme situations.

In the automotive and utility-vehicle sector, only a few manufacturers have had this kind of facility at their disposal, as its development involves a lot of effort and expense.

An enormous industrial robot manipulator simulates braking maneuvers

The simulation facility’s structure at ITWM consists of a real vehicle interior where the test driver can operate the steering wheel, accelerator, and brakes as usual. The vehicle interior is integrated into a 6-axis robotic system that looks like a gigantic gripper arm and can simulate acceleration, braking, or tight curves by leaning and rotating. “We have much greater room to maneuver than with the kinematic systems usually employed today. At the same time, the space requirements are comparatively quite low,” according to project manager Michael Kleer.

For test drivers to behave authentically, they must have the feeling they are actually situated in a moving vehicle. If movements of the simulator do not match the visual impressions, this not only influences driver reactions, it can also lead to symptoms like kinetosis. Simulator sickness is triggered by contradictory sensory perceptions, the same way motion sickness or sea sickness is.

“To prevent these unpleasant side effects, we have developed our motion cueing algorithms that generate the control signals for the robot in close cooperation with researchers in cognition,” explains Dreßler. On the basis of this interdisciplinary knowledge, the motions of the simulator can be matched to visual input so they are perceived as very natural by the test drivers. At the same time, an enormous projection dome provides the external impression of real driving. 18 projectors provide a realistic 300 degree view of the situation for the driver. “You can imagine it as resembling an IMAX theater,” according to Dreßler.

Driving simulations that also take into account the human effects on a vehicle may become more important in future. The increasing number of driver assistance systems will themselves make the human-machine interface in automobiles increasingly important. The demands placed on simulations will thus become increasingly more specific. “That is where we have an additional advantage with our approach: all the algorithms are proprietary in-house developments – so we therefore can match the individual algorithm parameters to project-specific problems,” says Kleer.

The simulation facility at ITWM has been in operation since July 2013 – and two projects in collaboration with the Volvo Construction Equipment company are presently underway. From April 7 to 11 the technology will be shown at the Hannover Messe trade fair (Hall 7, Booth B10).

Dr. Klaus Dreßler | Fraunhofer-Institut

Further reports about: Driving ITWM Interactive braking feeling robot-based driving sickness symptoms

More articles from Trade Fair News:

nachricht Functional films and efficient coating processes
14.02.2017 | Fraunhofer-Gesellschaft

nachricht Nanotechnology for life sciences and smart products: international innovations with IVAM in Tokyo
07.02.2017 | IVAM Fachverband für Mikrotechnik

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>