Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Interactive simulator for vehicle drivers

07.03.2014

Maximize mileage, safety, or operating life? Driving behavior behind the wheel has a big influence on the vehicle. Fraunhofer researchers have developed a driving simulator designed to make the „human factor“ more calculable for vehicle engineers.

Simulations are an important development tool in the automobile and utility vehicle industries – they enable engineers to see into the future. The properties of vehicle components, such as how they respond in an accident, their reliability, or their energy efficiency can be investigated using simulations before the first component is manufactured.


Almost like real life: the vehicle simulator at Fraunhofer ITWM has 18 projectors that throw their images up on a huge dome. The vehicle interior can simulate nearly every driving situation.

© Fraunhofer ITWM

To continue to maintain the prediction power of the results, however, all of the influences that the vehicle is exposed to later on in actual operation must be taken into account – including those of drivers and operators.

Researchers at the Fraunhofer Institute for Industrial Mathematics ITWM in Kaiserslautern, Germany, have developed an interactive driving simulator using RODOS (robot-based driving and operation simulator) with which realistic interaction between human and vehicle can be analyzed. “Driving behavior is a key factor that is often insufficiently accounted for in computational models,” according to Dr. Klaus Dreßler of ITWM.

No doubt there are algorithms that are supposed to represent the “human factor” in simulations – however, these do not properly reflect the complexity of human behavior. For this reason, researchers at ITWM have shifted to a hybrid design for simulation. Hybrid here means a real person interacts with a simulation environment – a well-known example of this is a flight simulator, in which pilots regularly practice extreme situations.

In the automotive and utility-vehicle sector, only a few manufacturers have had this kind of facility at their disposal, as its development involves a lot of effort and expense.

An enormous industrial robot manipulator simulates braking maneuvers

The simulation facility’s structure at ITWM consists of a real vehicle interior where the test driver can operate the steering wheel, accelerator, and brakes as usual. The vehicle interior is integrated into a 6-axis robotic system that looks like a gigantic gripper arm and can simulate acceleration, braking, or tight curves by leaning and rotating. “We have much greater room to maneuver than with the kinematic systems usually employed today. At the same time, the space requirements are comparatively quite low,” according to project manager Michael Kleer.

For test drivers to behave authentically, they must have the feeling they are actually situated in a moving vehicle. If movements of the simulator do not match the visual impressions, this not only influences driver reactions, it can also lead to symptoms like kinetosis. Simulator sickness is triggered by contradictory sensory perceptions, the same way motion sickness or sea sickness is.

“To prevent these unpleasant side effects, we have developed our motion cueing algorithms that generate the control signals for the robot in close cooperation with researchers in cognition,” explains Dreßler. On the basis of this interdisciplinary knowledge, the motions of the simulator can be matched to visual input so they are perceived as very natural by the test drivers. At the same time, an enormous projection dome provides the external impression of real driving. 18 projectors provide a realistic 300 degree view of the situation for the driver. “You can imagine it as resembling an IMAX theater,” according to Dreßler.

Driving simulations that also take into account the human effects on a vehicle may become more important in future. The increasing number of driver assistance systems will themselves make the human-machine interface in automobiles increasingly important. The demands placed on simulations will thus become increasingly more specific. “That is where we have an additional advantage with our approach: all the algorithms are proprietary in-house developments – so we therefore can match the individual algorithm parameters to project-specific problems,” says Kleer.

The simulation facility at ITWM has been in operation since July 2013 – and two projects in collaboration with the Volvo Construction Equipment company are presently underway. From April 7 to 11 the technology will be shown at the Hannover Messe trade fair (Hall 7, Booth B10).

Dr. Klaus Dreßler | Fraunhofer-Institut

Further reports about: Driving ITWM Interactive braking feeling robot-based driving sickness symptoms

More articles from Trade Fair News:

nachricht Novel coatings combine protection with colour effects
27.03.2015 | INM - Leibniz-Institut für Neue Materialien gGmbH

nachricht Surface-modified nanoparticles endow coatings with combined properties
26.03.2015 | INM - Leibniz-Institut für Neue Materialien gGmbH

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Experiment Provides the Best Look Yet at 'Warm Dense Matter' at Cores of Giant Planets

In an experiment at the Department of Energy's SLAC National Accelerator Laboratory, scientists precisely measured the temperature and structure of aluminum as...

Im Focus: Energy-autonomous and wireless monitoring protects marine gearboxes

The IPH presents a solution at HANNOVER MESSE 2015 to make ship traffic more reliable while decreasing the maintenance costs at the same time. In cooperation with project partners, the research institute from Hannover, Germany, has developed a sensor system which continuously monitors the condition of the marine gearbox, thus preventing breakdowns. Special feature: the monitoring system works wirelessly and energy-autonomously. The required electrical power is generated where it is needed – directly at the sensor.

As well as cars need to be certified regularly (in Germany by the TÜV – Technical Inspection Association), ships need to be inspected – if the powertrain stops...

Im Focus: 3-D satellite, GPS earthquake maps isolate impacts in real time

Method produced by UI researcher could improve reaction time to deadly, expensive quakes

When an earthquake hits, the faster first responders can get to an impacted area, the more likely infrastructure--and lives--can be saved.

Im Focus: Atlantic Ocean overturning found to slow down already today

The Atlantic overturning is one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards. Also known as the Gulf Stream system, it is responsible for the mild climate in northwestern Europe. 

Scientists now found evidence for a slowdown of the overturning – multiple lines of observation suggest that in recent decades, the current system has been...

Im Focus: Robot inspects concrete garage floors and bridge roadways for damage

Because they are regularly subjected to heavy vehicle traffic, emissions, moisture and salt, above- and underground parking garages, as well as bridges, frequently experience large areas of corrosion. Most inspection systems to date have only been capable of inspecting smaller surface areas.

From April 13 to April 17 at the Hannover Messe (hall 2, exhibit booth C16), engineers from the Fraunhofer Institute for Nondestructive Testing IZFP will be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

10. CeBiTec Symposium zum Big Data-Problem

17.03.2015 | Event News

 
Latest News

Two Most Destructive Termite Species Forming Superswarms in South Florida

27.03.2015 | Agricultural and Forestry Science

ORNL-Led Team Demonstrates Desalination with Nanoporous Graphene Membrane

27.03.2015 | Materials Sciences

Coorong Fish Hedge Their Bets for Survival

27.03.2015 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>