Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovative Infrared System Dries and Sinters Printed Electronics Almost 2000 Times Faster than Previously

02.03.2016
  • Heraeus develops custom-built IR module
  • Successful tests carried out at TU Chemnitz with inkjet silver nano particle inks using the roll-to-roll printing process

The continuous printing of electronics for displays or solar cells, depends on a rapid drying of the surface and good conductivity of the silver inks. A newly developed infrared module from Heraeus Noblelight achieves this in significantly less than one second (0.32 secs) and is consequently almost 2000 times faster than conventional drying techniques.


Infrared emitters dry and sinter within 0.32 seconds.

Copyright Heraeus Noblelight 2016

Heraeus developed and installed the made-to-measure module in a roll-to-roll printing system. In tests, the infrared radiation proved far superior to drying and sintering using conventional hot plates or hot air ovens. These trials were carried out in the Department of Digital Printing and Graphics Technology of Chemnitz Technical University and the Fraunhofer Institute for Electronic Nanosystems.

Heraeus will be presenting this exciting innovation, together with other UV, Infrared, and Flashlamp systems for the printed electronics sector at the Lopec exhibition in Munich in April 2016.

Metallic nano particles for printed electronics are often deposited onto flexible and polymeric materials using Inkjet printing and are then dried and sintered. On a laboratory scale, this is mostly achieved using hot plates or hot air. However, for mass production, the Roll-to-Roll (R2R) technique must be used. And this means that drying and sintering must be significantly faster.

New techniques have been investigated, such as microwaves, lasers, Intense Pulse Light (IPL) and infrared radiation. The optimum technique must be able to dry and sinter quickly and efficiently, while at the same time causing no damage to the polymer substrate, which is often temperature sensitive.

Heraeus has developed a purpose-built infrared module for an R2R printing system. This has been used to carry out tests on the infrared drying and sintering of inkjet printed silver coatings on polyethylene naphtalate. (PEN). It could be shown that the post treatment of the freshly printed deposit led to a conductivity of up to 15% of pure silver.

Compared with drying and sintering with conventional hot plates or hot air, infrared radiation achieved twice the conductivity in only 0.32 seconds. In contrast, using a hot plate, drying and sintering took about ten minutes.

Using electron microscope imaging, the microstructure of the sintered silver particles was then analyzed in relation to the IR parameters (filament temperature of the emitter, duration and power of the radiation and distance of the emitter and reflector from the substrate.)

After optimizing these parameters, the silver was then dried at 50 kW/m2 and sintered at 150 kW/m2. Using the same short wave emitter each time, merely requiring control adjustment. The printed electronics on the continuous foil can therefore be dried and sintered in one stage, at high belt speeds of up to 1 m/sec and an irradiation time of less than 0.32 seconds.

This research and development work was recently published in the Journal Materials Chemistry C: E. Sowade, H. Kang, K.Y. Mitra, O.J. Weiß, J. Weber, R.R. Baumann, Roll-to-roll infrared (IR) drying and sintering of an inkjet-printed silver nanoparticle ink within 1 second, J. Mater. Chem. C. 3 (2015) 11815–11826. doi:10.1039/C5TC02291F.

Heraeus, the technology group headquartered in Hanau, Germany, is a leading international family-owned company formed in 1851. With expertise, a focus on innovations, operational excellence and an entrepreneurial leadership, we strive to continuously improve our business performance.

We create high-quality solutions for our clients and strengthen their competitiveness in the long term by combining material expertise with technological know-how. Our ideas are focused on themes such as the environment, energy, health, mobility and industrial applications. Our portfolio ranges from components to coordinated material systems which are used in a wide variety of industries, including the steel, electronics, chemical, automotive and telecommunications industries.

In the 2014 financial year, Heraeus generated product revenues of €3.4 bn and precious metal revenues of €12.2bn euros. With around 12,600 employees worldwide in more than 100 subsidiaries in 38 countries, Heraeus holds a leading position in its global markets.

Heraeus Noblelight GmbH with its headquarters in Hanau and with subsidiaries in the USA, Great Britain, France, China and Australia, is one of the technology- and market-leaders in the production of specialist light sources and systems. In 2014, Heraeus Noblelight had an annual turnover of 137.3 Million € and employed 884 people worldwide. The organization develops, manufactures and markets infrared and ultraviolet emitters, systems and solutions for applications in industrial manufacture, environmental protection, medicine and cosmetics, research, development and analytical measurement techniques.

For further information, please contact:
Technical: Heraeus Noblelight GmbH
Reinhard-Heraeus-Ring 7
D-63801 Kleinostheim
Tel +49 6181/35-8545, Fax +49 6181/35-16 8545
E-Mail hng-infrared@heraeus.com

Press: Dr. Marie-Luise Bopp
Heraeus Noblelight GmbH,
Abteilung Marketing/Werbung
Tel +49 6181/35-8547, Fax +49 6181/35-16 8547
E-Mail marie-luise.bopp@heraeus.com
www.heraeus-noblelight.com

Dr. Marie-Luise Bopp | Heraeus Noblelight GmbH

More articles from Trade Fair News:

nachricht COMPAMED 2016 connected medical devices and people
23.11.2016 | IVAM Fachverband für Mikrotechnik

nachricht Successfully transferring Industrie 4.0 into reality
21.11.2016 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>