Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovative image processing for service robots

17.03.2014

Fraunhofer IPA presents new technologies for 3D environment perception and object recognition

Warehouse robots capable of sorting chaotically delivered parts; domestic assistance robots able to distinguish between graspable objects and living areas; cleaning robots that detect and remove dirt: the systems developed at Fraunhofer IPA for three-dimensional object recognition and environment sensing allow robots to accomplish even complex tasks.


3D object recognition in variable light conditions or when partially hidden.

Image credit: Fraunhofer IPA


3D environment perception: The initial situation (left) is segmented into homogeneous areas (centre). Then the surface properties are determined (right) (e. g. green cylinder).

Image credit: Fraunhofer IPA

At Automatica 2014, Fraunhofer IPA will present innovative technologies for image processing and collision-free manipulation in a dynamic environment.

Accurate, fast, flexible and easy to operate for the user: these are the key criteria for real-world 3D image-processing solutions for robot systems. Fraunhofer IPA has developed a diverse and versatile software library for automatic object recognition and teach-in as well as for three-dimensional environment sensing.

At Automatica 2014, Fraunhofer IPA will demonstrate not only how a robot system can execute collision-free motions, including in a dynamic environment, but also how it can reliably recognize, classify and grasp objects.

Recognition and classification of textured and textureless objects

To reliably manipulate objects in a dynamic everyday environment, a robot system must be capable of recognizing and localizing the objects. The image processing searches selectively for feature points, which are assembled into a model and stored. This makes it possible for objects to be recognized also in variable light conditions or when partially hidden. And that’s not all the 3D object recognition system can do: the combination of geometrical shapes also allows it to determine the class or category of an object.

For example, the robot “knows” that a table is made up of a horizontal panel on top of four vertical cylinders, that a bottle is an oblong cylinder, a milk carton is a rectangular solid and a dish is a hemisphere. “Thanks to the combination of object recognition and classification, the robot can independently ‘learn’, or be intuitively taught to identify, specific objects or general object classes,” explains Jan Fischer, research assistant in the Robot and Assistance Systems department.

“Also in a variable environment, it is capable of reliably recognizing objects – in under a second.” The exhibit at Automatica 2014 will demonstrate the fast and reliable recognition of any object in an undefined environment.

Environment perception

To generate a 3D map, the robot senses its environment three-dimensionally using a combination of colour camera and depth camera, which produces a point cloud with accurately assigned distance values. The point clouds, which are recorded at different times, must first be registered in a common coordinate system. Next, the point data are segmented into geometric primitives, such as polygons.

This makes it possible for the relevant regions and objects to be reliably identified in real-time. In addition to collision-free navigation and manipulation, this also allows the option of remote control by a human operator, who can make sense of the communicated data more quickly. “We have many years of experience in this area and can offer a versatile technology capable of being tailored to suit different requirements and applications,” says Georg Arbeiter, project manager in the Robot and Assistance Systems department.

The exhibit at Automatica 2014 will demonstrate collision-free manipulation in a dynamic environment. Workpieces are moved alternately by two robot arms, the second arm in each case representing a dynamic obstacle. The methods developed by Fraunhofer IPA use camera data to generate an environment model that is used as an input for planning the motion of a robot arm. Both moving obstacles and graspable objects can be identified. This makes the method suitable for applications requiring fast and flexible reactions to changes in environment.

Applications

Learnable 3D object recognition and environment sensing can be used in a variety of areas and have been successfully implemented by Fraunhofer IPA in a wide range of different applications:
-in an industrial setting for autonomous driverless transport systems or for handling, warehousing and sorting operations;
-as a key technology for developing advanced assistance robots designed to provide a higher quality of life to people who are in need of assistance;
-to support growing automation in agriculture, e.g. to detect when fruit and vegetables are ready for picking or to enable milking robots to identify and localize cows’ udders;
-to enable cleaning robots to automatically detect dirt.

Contact
Dipl.-Ing. Georg Arbeiter, georg.arbeiter@ipa.fraunhofer.de, phone +49 711 970-1299
Richard Bormann M.Sc., richard.bormann@ipa.fraunhofer.de, phone +49 711 970-1062
Dipl.-Inf. Jan Fischer, jan.fischer@ipa.fraunhofer.de, phone +49 711 970-1191

More at Automatica – 6th International Trade Fair for Automation and Mechatronics
3 to 6 June 2014
New Trade Fair Centre Munich
Hall A4 | Stand 530
www.automatica-munich.com

Weitere Informationen:

http://www.ipa.fraunhofer.de/6D-Objekterkennung.520.0.html?&L=2http://www.ip...

Jörg Walz | Fraunhofer-Institut

Further reports about: Automatisierung IPA Produktionstechnik Trade classification identify processing sensing sorting

More articles from Trade Fair News:

nachricht “Laser Technology Live” at the AKL’18 International Laser Technology Congress in Aachen
23.02.2018 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Empa shows "Gas station of the future"
23.02.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>