Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infrared Emitters for Reproducible, Three-Dimensional Heating Processes

13.07.2010
  • Welding, de-burring and adhesive fixing all require heat exactly focused on edges or corners
  • Heraeus Noblelight is showing shaped QRC® infrared emitters at the K Exhibition

Head restraints, roof coverings, or arm rests – a car interior consists of very many formed parts. Mostly, these consist of a plastic support part covered with textile materials, leather or more plastic. The edges of these interior décor features are then folded over and stuck together. The associated heating processes must usually be carried out in relatively restricted space in a very short time.


QRC® Infrared emitters have a nano reflector of quartz material and can be shaped exactly to match work pieces. Copyright Heraeus Noblelight 2010

QRC® infrared emitters, which are shaped to follow the contours of the parts to be heated, transfer heat rapidly, without contact and in a targeted manner and are themselves very heat-resistant. In addition, in very hot locations, they do not create hot- or cold-spots, the heating is homogenous and the result is reliable.

Heraeus Noblelight is showing QRC® infrared emitters at the K Exhibition in Duesseldorf from 27 October to 3 November.

Support parts of plastic or natural fibre polypropylene (PP) are covered with décor materials in textiles, leather or other plastics. The excess length of cover material is then thermally fixed by being folded over and glued. Usually, this takes place with an adhesive, which is activated with heat at temperatures of around 80ºC. When this fold over is stuck together without adhesive, the plastic is melted at 130-200ºC and the folded surfaces pressed together.

Conventionally, hot air jets are generally used because these can be directed precisely on the edges. However, as they need to be working virtually constantly, hot air jets use a lot of energy and the area around them can be heated unnecessarily.

Today, infrared heaters are increasingly being used and these deliver heat at the right time in the right place. Infrared radiation heats plastic components without contact and unlike hot air technology, there is no need for a transfer medium.

Infrared emitters can be shaped to the contour of the fold to be heated so that the energy is transferred in a totally targeted manner. As a rule, short wave infrared emitters are used and these respond very quickly to control commands. As a result, the emitters can be switched on when heat is actually required. This saves energy and costs, especially when the heat is needed for only a few seconds in processes with very short cycle times.

QRC® Infrared Emitters for More Stable Heating Processes.
Reflectors on emitters work to achieve targeted heating and usually these are made of gold or some other metal oxide. QRC® infrared emitters (QRC = quartz reflective coating) have a nano reflector made of quartz material.

When space is tight in production, repeated heating processes, in the long run, can even impair the effect of the heating source itself.

While heat can damage a gold coating, opaque quartz material, QRC® (quartz reflective coating) is not affected by heat, off-gassing or vapours and the reflectivity remains continually good. This helps to create heating processes which are more homogenous, more stable and more reliable.

Infrared emitters with the QRC® nano reflector coating also do not require their own cooling under extreme operating conditions. As a result, they can be fitted into a compact system. A design engineer can make use of this, for example to keep products stationary. When an infrared emitter is matched to the product contours and heats this uniformly, neither the product nor the heat source needs to be guided or driven.

Heraeus Noblelight GmbH with its headquarters in Hanau and with subsidiaries in the USA, Great Britain, France, China, Australia and Puerto Rico, is one of the technology and market leaders in the production of specialty light sources. In 2009, Heraeus Noblelight had an annual turnover of 71.6 Million € and employed 707 people worldwide. The organisation develops, manufactures and markets infrared and ultraviolet emitters for applications in industrial manufacture, environmental protection, medicine and cosmetics, research, development and analytical laboratories.

Heraeus, the precious metals and technology group headquartered in Hanau, Germany, is a global, private company with over 155 years of tradition. Our businesses include precious metals, sensors, biomaterials and medical products, dental products, quartz glass, and specialty light sources. With product revenues of € 2.6 billion and precious metal trading revenues of € 13.6 billion, as well as more than 12,300 employees in over 110 subsidiaries worldwide, Heraeus holds a leading position in its global markets.

Further Information:

Readers:
Heraeus Noblelight GmbH
Reinhard-Heraeus-Ring 7
D-63801 Kleinostheim
Phone +49 6181/35-8545, Fax +49 6181/35-16 8545
E-Mail hng-infrared@heraeus.com
Press:
Dr. Marie-Luise Bopp
Heraeus Noblelight GmbH,
Abteilung Marketing/Werbung
Phone +49 6181/35-8547, Fax +49 6181/35-16 8547
E-Mail marie-luise.bopp@heraeus.com

Dr. Marie-Luise Bopp | Heraeus Noblelight GmbH
Further information:
http://www.heraeus-noblelight.com
http://www.heraeus-noblelight.com/infrared

More articles from Trade Fair News:

nachricht SYSTEMS INTEGRATION 2018 in Switzerland focuses on building blocks for industrial digitalization
20.11.2017 | IVAM Fachverband für Mikrotechnik

nachricht Medica 2017: New software enables early diagnosis of arteriosclerosis
06.11.2017 | Technische Universität Kaiserslautern

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>