Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infrared Emitters for Reproducible, Three-Dimensional Heating Processes

13.07.2010
  • Welding, de-burring and adhesive fixing all require heat exactly focused on edges or corners
  • Heraeus Noblelight is showing shaped QRC® infrared emitters at the K Exhibition

Head restraints, roof coverings, or arm rests – a car interior consists of very many formed parts. Mostly, these consist of a plastic support part covered with textile materials, leather or more plastic. The edges of these interior décor features are then folded over and stuck together. The associated heating processes must usually be carried out in relatively restricted space in a very short time.


QRC® Infrared emitters have a nano reflector of quartz material and can be shaped exactly to match work pieces. Copyright Heraeus Noblelight 2010

QRC® infrared emitters, which are shaped to follow the contours of the parts to be heated, transfer heat rapidly, without contact and in a targeted manner and are themselves very heat-resistant. In addition, in very hot locations, they do not create hot- or cold-spots, the heating is homogenous and the result is reliable.

Heraeus Noblelight is showing QRC® infrared emitters at the K Exhibition in Duesseldorf from 27 October to 3 November.

Support parts of plastic or natural fibre polypropylene (PP) are covered with décor materials in textiles, leather or other plastics. The excess length of cover material is then thermally fixed by being folded over and glued. Usually, this takes place with an adhesive, which is activated with heat at temperatures of around 80ºC. When this fold over is stuck together without adhesive, the plastic is melted at 130-200ºC and the folded surfaces pressed together.

Conventionally, hot air jets are generally used because these can be directed precisely on the edges. However, as they need to be working virtually constantly, hot air jets use a lot of energy and the area around them can be heated unnecessarily.

Today, infrared heaters are increasingly being used and these deliver heat at the right time in the right place. Infrared radiation heats plastic components without contact and unlike hot air technology, there is no need for a transfer medium.

Infrared emitters can be shaped to the contour of the fold to be heated so that the energy is transferred in a totally targeted manner. As a rule, short wave infrared emitters are used and these respond very quickly to control commands. As a result, the emitters can be switched on when heat is actually required. This saves energy and costs, especially when the heat is needed for only a few seconds in processes with very short cycle times.

QRC® Infrared Emitters for More Stable Heating Processes.
Reflectors on emitters work to achieve targeted heating and usually these are made of gold or some other metal oxide. QRC® infrared emitters (QRC = quartz reflective coating) have a nano reflector made of quartz material.

When space is tight in production, repeated heating processes, in the long run, can even impair the effect of the heating source itself.

While heat can damage a gold coating, opaque quartz material, QRC® (quartz reflective coating) is not affected by heat, off-gassing or vapours and the reflectivity remains continually good. This helps to create heating processes which are more homogenous, more stable and more reliable.

Infrared emitters with the QRC® nano reflector coating also do not require their own cooling under extreme operating conditions. As a result, they can be fitted into a compact system. A design engineer can make use of this, for example to keep products stationary. When an infrared emitter is matched to the product contours and heats this uniformly, neither the product nor the heat source needs to be guided or driven.

Heraeus Noblelight GmbH with its headquarters in Hanau and with subsidiaries in the USA, Great Britain, France, China, Australia and Puerto Rico, is one of the technology and market leaders in the production of specialty light sources. In 2009, Heraeus Noblelight had an annual turnover of 71.6 Million € and employed 707 people worldwide. The organisation develops, manufactures and markets infrared and ultraviolet emitters for applications in industrial manufacture, environmental protection, medicine and cosmetics, research, development and analytical laboratories.

Heraeus, the precious metals and technology group headquartered in Hanau, Germany, is a global, private company with over 155 years of tradition. Our businesses include precious metals, sensors, biomaterials and medical products, dental products, quartz glass, and specialty light sources. With product revenues of € 2.6 billion and precious metal trading revenues of € 13.6 billion, as well as more than 12,300 employees in over 110 subsidiaries worldwide, Heraeus holds a leading position in its global markets.

Further Information:

Readers:
Heraeus Noblelight GmbH
Reinhard-Heraeus-Ring 7
D-63801 Kleinostheim
Phone +49 6181/35-8545, Fax +49 6181/35-16 8545
E-Mail hng-infrared@heraeus.com
Press:
Dr. Marie-Luise Bopp
Heraeus Noblelight GmbH,
Abteilung Marketing/Werbung
Phone +49 6181/35-8547, Fax +49 6181/35-16 8547
E-Mail marie-luise.bopp@heraeus.com

Dr. Marie-Luise Bopp | Heraeus Noblelight GmbH
Further information:
http://www.heraeus-noblelight.com
http://www.heraeus-noblelight.com/infrared

More articles from Trade Fair News:

nachricht Fraunhofer HHI with latest VR technologies at NAB in Las Vegas
24.04.2017 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

nachricht Kiel nano research at the Hannover Messe
21.04.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>