Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infrared Emitters for Reproducible, Three-Dimensional Heating Processes

13.07.2010
  • Welding, de-burring and adhesive fixing all require heat exactly focused on edges or corners
  • Heraeus Noblelight is showing shaped QRC® infrared emitters at the K Exhibition

Head restraints, roof coverings, or arm rests – a car interior consists of very many formed parts. Mostly, these consist of a plastic support part covered with textile materials, leather or more plastic. The edges of these interior décor features are then folded over and stuck together. The associated heating processes must usually be carried out in relatively restricted space in a very short time.


QRC® Infrared emitters have a nano reflector of quartz material and can be shaped exactly to match work pieces. Copyright Heraeus Noblelight 2010

QRC® infrared emitters, which are shaped to follow the contours of the parts to be heated, transfer heat rapidly, without contact and in a targeted manner and are themselves very heat-resistant. In addition, in very hot locations, they do not create hot- or cold-spots, the heating is homogenous and the result is reliable.

Heraeus Noblelight is showing QRC® infrared emitters at the K Exhibition in Duesseldorf from 27 October to 3 November.

Support parts of plastic or natural fibre polypropylene (PP) are covered with décor materials in textiles, leather or other plastics. The excess length of cover material is then thermally fixed by being folded over and glued. Usually, this takes place with an adhesive, which is activated with heat at temperatures of around 80ºC. When this fold over is stuck together without adhesive, the plastic is melted at 130-200ºC and the folded surfaces pressed together.

Conventionally, hot air jets are generally used because these can be directed precisely on the edges. However, as they need to be working virtually constantly, hot air jets use a lot of energy and the area around them can be heated unnecessarily.

Today, infrared heaters are increasingly being used and these deliver heat at the right time in the right place. Infrared radiation heats plastic components without contact and unlike hot air technology, there is no need for a transfer medium.

Infrared emitters can be shaped to the contour of the fold to be heated so that the energy is transferred in a totally targeted manner. As a rule, short wave infrared emitters are used and these respond very quickly to control commands. As a result, the emitters can be switched on when heat is actually required. This saves energy and costs, especially when the heat is needed for only a few seconds in processes with very short cycle times.

QRC® Infrared Emitters for More Stable Heating Processes.
Reflectors on emitters work to achieve targeted heating and usually these are made of gold or some other metal oxide. QRC® infrared emitters (QRC = quartz reflective coating) have a nano reflector made of quartz material.

When space is tight in production, repeated heating processes, in the long run, can even impair the effect of the heating source itself.

While heat can damage a gold coating, opaque quartz material, QRC® (quartz reflective coating) is not affected by heat, off-gassing or vapours and the reflectivity remains continually good. This helps to create heating processes which are more homogenous, more stable and more reliable.

Infrared emitters with the QRC® nano reflector coating also do not require their own cooling under extreme operating conditions. As a result, they can be fitted into a compact system. A design engineer can make use of this, for example to keep products stationary. When an infrared emitter is matched to the product contours and heats this uniformly, neither the product nor the heat source needs to be guided or driven.

Heraeus Noblelight GmbH with its headquarters in Hanau and with subsidiaries in the USA, Great Britain, France, China, Australia and Puerto Rico, is one of the technology and market leaders in the production of specialty light sources. In 2009, Heraeus Noblelight had an annual turnover of 71.6 Million € and employed 707 people worldwide. The organisation develops, manufactures and markets infrared and ultraviolet emitters for applications in industrial manufacture, environmental protection, medicine and cosmetics, research, development and analytical laboratories.

Heraeus, the precious metals and technology group headquartered in Hanau, Germany, is a global, private company with over 155 years of tradition. Our businesses include precious metals, sensors, biomaterials and medical products, dental products, quartz glass, and specialty light sources. With product revenues of € 2.6 billion and precious metal trading revenues of € 13.6 billion, as well as more than 12,300 employees in over 110 subsidiaries worldwide, Heraeus holds a leading position in its global markets.

Further Information:

Readers:
Heraeus Noblelight GmbH
Reinhard-Heraeus-Ring 7
D-63801 Kleinostheim
Phone +49 6181/35-8545, Fax +49 6181/35-16 8545
E-Mail hng-infrared@heraeus.com
Press:
Dr. Marie-Luise Bopp
Heraeus Noblelight GmbH,
Abteilung Marketing/Werbung
Phone +49 6181/35-8547, Fax +49 6181/35-16 8547
E-Mail marie-luise.bopp@heraeus.com

Dr. Marie-Luise Bopp | Heraeus Noblelight GmbH
Further information:
http://www.heraeus-noblelight.com
http://www.heraeus-noblelight.com/infrared

More articles from Trade Fair News:

nachricht COMPAMED 2016 connected medical devices and people
23.11.2016 | IVAM Fachverband für Mikrotechnik

nachricht Successfully transferring Industrie 4.0 into reality
21.11.2016 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>