Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infrared Emitters for Reproducible, Three-Dimensional Heating Processes

13.07.2010
  • Welding, de-burring and adhesive fixing all require heat exactly focused on edges or corners
  • Heraeus Noblelight is showing shaped QRC® infrared emitters at the K Exhibition

Head restraints, roof coverings, or arm rests – a car interior consists of very many formed parts. Mostly, these consist of a plastic support part covered with textile materials, leather or more plastic. The edges of these interior décor features are then folded over and stuck together. The associated heating processes must usually be carried out in relatively restricted space in a very short time.


QRC® Infrared emitters have a nano reflector of quartz material and can be shaped exactly to match work pieces. Copyright Heraeus Noblelight 2010

QRC® infrared emitters, which are shaped to follow the contours of the parts to be heated, transfer heat rapidly, without contact and in a targeted manner and are themselves very heat-resistant. In addition, in very hot locations, they do not create hot- or cold-spots, the heating is homogenous and the result is reliable.

Heraeus Noblelight is showing QRC® infrared emitters at the K Exhibition in Duesseldorf from 27 October to 3 November.

Support parts of plastic or natural fibre polypropylene (PP) are covered with décor materials in textiles, leather or other plastics. The excess length of cover material is then thermally fixed by being folded over and glued. Usually, this takes place with an adhesive, which is activated with heat at temperatures of around 80ºC. When this fold over is stuck together without adhesive, the plastic is melted at 130-200ºC and the folded surfaces pressed together.

Conventionally, hot air jets are generally used because these can be directed precisely on the edges. However, as they need to be working virtually constantly, hot air jets use a lot of energy and the area around them can be heated unnecessarily.

Today, infrared heaters are increasingly being used and these deliver heat at the right time in the right place. Infrared radiation heats plastic components without contact and unlike hot air technology, there is no need for a transfer medium.

Infrared emitters can be shaped to the contour of the fold to be heated so that the energy is transferred in a totally targeted manner. As a rule, short wave infrared emitters are used and these respond very quickly to control commands. As a result, the emitters can be switched on when heat is actually required. This saves energy and costs, especially when the heat is needed for only a few seconds in processes with very short cycle times.

QRC® Infrared Emitters for More Stable Heating Processes.
Reflectors on emitters work to achieve targeted heating and usually these are made of gold or some other metal oxide. QRC® infrared emitters (QRC = quartz reflective coating) have a nano reflector made of quartz material.

When space is tight in production, repeated heating processes, in the long run, can even impair the effect of the heating source itself.

While heat can damage a gold coating, opaque quartz material, QRC® (quartz reflective coating) is not affected by heat, off-gassing or vapours and the reflectivity remains continually good. This helps to create heating processes which are more homogenous, more stable and more reliable.

Infrared emitters with the QRC® nano reflector coating also do not require their own cooling under extreme operating conditions. As a result, they can be fitted into a compact system. A design engineer can make use of this, for example to keep products stationary. When an infrared emitter is matched to the product contours and heats this uniformly, neither the product nor the heat source needs to be guided or driven.

Heraeus Noblelight GmbH with its headquarters in Hanau and with subsidiaries in the USA, Great Britain, France, China, Australia and Puerto Rico, is one of the technology and market leaders in the production of specialty light sources. In 2009, Heraeus Noblelight had an annual turnover of 71.6 Million € and employed 707 people worldwide. The organisation develops, manufactures and markets infrared and ultraviolet emitters for applications in industrial manufacture, environmental protection, medicine and cosmetics, research, development and analytical laboratories.

Heraeus, the precious metals and technology group headquartered in Hanau, Germany, is a global, private company with over 155 years of tradition. Our businesses include precious metals, sensors, biomaterials and medical products, dental products, quartz glass, and specialty light sources. With product revenues of € 2.6 billion and precious metal trading revenues of € 13.6 billion, as well as more than 12,300 employees in over 110 subsidiaries worldwide, Heraeus holds a leading position in its global markets.

Further Information:

Readers:
Heraeus Noblelight GmbH
Reinhard-Heraeus-Ring 7
D-63801 Kleinostheim
Phone +49 6181/35-8545, Fax +49 6181/35-16 8545
E-Mail hng-infrared@heraeus.com
Press:
Dr. Marie-Luise Bopp
Heraeus Noblelight GmbH,
Abteilung Marketing/Werbung
Phone +49 6181/35-8547, Fax +49 6181/35-16 8547
E-Mail marie-luise.bopp@heraeus.com

Dr. Marie-Luise Bopp | Heraeus Noblelight GmbH
Further information:
http://www.heraeus-noblelight.com
http://www.heraeus-noblelight.com/infrared

More articles from Trade Fair News:

nachricht LaserTAB: More efficient and precise contacts thanks to human-robot collaboration
25.09.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht OLEDs applied to paper-thin stainless steel
21.09.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>