Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Infrared Emitters Improve Lacquered Surfaces

Application Specialists at the Paint Expo Exhibition

Many screens, internal claddings in cars and high value cosmetic packages are manufactured from plastics and contain a protective lacquer or finishing. The drying of the coating on the plastic components is not a trivial matter, for the surfaces need to be perfectly cured without applying to much heat to the plastic. Infrared heaters transfer energy in a contact-free manner and are easy to control. Consequently, the heat is precisely dispensed and the quality of the lacquered surface is improved.

Highly polished plastic surfaces are achieved with UV lacquers, whose curing is improved with the aid of infrared. Copyright Heraeus Noblelight 2012

The combination of infrared heat and UV lacquers is innovative. On one hand, the energy efficiency of the lacquer curing is improved and on the other hand the curing itself is significantly better through the pre-heating.

Heraeus Noblelight is presenting infrared emitters in Hall 1 on stand 1519 at the Paint Expo exhibition, which takes place in Karlsruhe in April, when there will also be an opportunity for face-to-face discussions with application specialists.

Whether it is matt black or a high value shiny varnish, car interiors often feature decorative varnishes. Lipstick tubes, face cream containers and powder compacts often have to provide some indication of their high value contents. These containers are manufactured in plastics, as are switches and levers in cars, and are then improved by coating. This is where UV lacquer is often used.

Energy-Efficiency in Lacquer Drying

UV powder lacquer is heated by infrared emitters to around 100-120ºC and then cured using UV radiation. As opposed to the curing of conventional powder lacquers, there is no need for any further heating. In this way, functional components can be coated exceptionally energy-efficiently and coating/curing plants have minimum space requirements. All infrared emitters, which are easy to control and regulate, like short wave, fast-response medium wave and carbon infrared emitters with response times in the order of seconds, are well suited for melting powder lacquer before UV curing.

Infrared emitters transfer energy in a contact-free manner and generate heat directly in the material. As a result, there is minimum air movement during heating unlike hot air ovens. Consequently, infrared drying minimizes the danger of dust inclusions in the lacquer and improves surface quality.

Quality Improvement by Using Infrared with UV Lacquers

Some plastic surfaces have a scratch-resistant lacquer, providing a mirror surface. This prevents fingerprints from spoiling the high gloss finish or hand- or sun creams from attacking the plastic.

These varnishes are often UV varnishes, which use UV radiation to initiate the curing. This curing is carried out much better at higher temperatures or it can even be optimized by pre-heating. For this reason, plastic components of radio screens, selector levers or lipstick tubes are first pre-heated with infrared. If the UV lacquer is melted first by the heat and then cured with the UV radiation, the surface quality is improved.

Infrared heat is then always used when heating processes must meet particular specifications in terms of space, throughput or quality. Infrared emitters can be precisely matched to product and process and this saves energy and costs.

Heraeus Noblelight GmbH with its headquarters in Hanau and with subsidiaries in the USA, Great Britain, France, China and Australia, is one of the technology- and market-leaders in the production of specialist light sources. In 2010, Heraeus Noblelight had an annual turnover of 98.9 Million € and employed 689 people worldwide. The organisation develops, manufactures and markets infrared and ultraviolet emitters for applications in industrial manufacture, environmental protection, medicine and cosmetics, research, development and analytical measurement techniques

The precious metals and technology group Heraeus headquartered in Hanau, Germany, is a global, family company with 160 years of tradition. Our businesses include precious metals, sensors, dental and medical products, quartz glass, and specialty lighting sources. With product revenues of € 4.1 billion and precious metal trading revenues of € 17.9 billion, as well as over 12,900 employees in more than 120 companies worldwide, Heraeus holds a leading position in its global markets.

For further information, please contact:

Heraeus Noblelight GmbH
Reinhard-Heraeus-Ring 7
D-63801 Kleinostheim
Tel +49 6181/35-8545, Fax +49 6181/35-16 8545
Dr. Marie-Luise Bopp
Heraeus Noblelight GmbH,
Abteilung Marketing/Werbung
Tel +49 6181/35-8547, Fax +49 6181/35-16 8547

Dr. Marie-Luise Bopp | Heraeus Noblelight GmbH
Further information:

More articles from Trade Fair News:

nachricht Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions
21.03.2018 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Development and Fast Analysis of 3D Printed HF Components
19.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Custom sequences for polymers using visible light

22.03.2018 | Materials Sciences

Scientists develop tiny tooth-mounted sensors that can track what you eat

22.03.2018 | Health and Medicine

Mat baits, hooks and destroys pollutants in water

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>