Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infrared Emitters Allow Heating Processes to be Automated

09.02.2011
Application Specialists at the Hannover Fair

Corrosion protection on large metal components, clear varnish on plastic products, coloured décor on stone – different coatings need to be dried on a large number of different products.


Heraeus Photos
The drying of decorative coating on stones is tested in the in-house Application Centre at Heraeus Noblelight. Copyright Heraeus Noblelight 2011

Infrared systems help to ensure that the heating steps required for drying are carried out as efficiently as possible.

In the “Surface Technology in Practice” area of the Hannover Fair, which takes place from 4th to 8th April, Heraeus Noblelight will be presenting its infrared emitters on Stand J34 in Hall 6, where visitors will also have the opportunity to meet with application specialists.

Small, irregularly shaped stones or other bulk materials are dried just as reliably as large surface metal parts using infrared heating technology. In both cases it is vital that the heating source is exactly matched to the product and the process. It is often worthwhile to put the complete system on the test bench to increase output and minimise energy consumption.

Metal plates must be heated homogenously over the complete surface to guarantee the quality of the coating. A precisely matched emitter arrangement in combination with a suitable control system brings significant improvements.

Using a suitable guidance system into the system, which ensures the optimum alignment of stones or granules to the radiation, bulk materials can be dried significantly more efficiently.

Drying of Coatings

No coating process is exactly the same as another but with all processes it is important that the lacquers and paints should be dried to high quality and as quickly as possible.

Many coatings set challenges which cannot be met with standard heat sources. The coating system defines the data framework. Water evaporates more slowly than solvents, so that infrared emitters dry water-based lacquers significantly faster because they are optimally matched to the absorption properties of water. Nano coatings to some extent require very high temperatures, which can be reliably delivered by infrared emitters. Powder coatings must be gelled very quickly and it saves time and money if only coating and surface are heated. The products are then ready for further processing much more quickly after the heating stage.

Optimising the System Saves Energy

The drying of lacquers and coatings increasingly needs to be faster but at the same time, drying must produce a top quality product and use the minimum amount of energy. The reduction of energy and material costs is very important to industrial companies in their struggle to maintain or improve competitiveness. Often it is more sensible and cost-effective to optimise an existing system rather than introduce new plant. A newly formed consulting team at Heraeus Noblelight offers support here through individual consultancy, practical planning and the prompt implementation of measures to optimise systems and processes.

Energy Efficiency Through Precise Matching

Infrared heating technology offers several possibilities of optimising energy consumption in industrial heating processes:

• High heat transfer capacity
• Contact-free heat transfer
• High efficiency
• Efficient energy transfer through the use of optimum wavelengths
• Energy usage confined to the working area by matching to the product shape
• Energy used only when required because of fast response times
Infrared heat will always be used whenever heating processes with particular challenges in terms of space, time or quality need to be resolved. Infrared emitters can be precisely matched to product and process and this saves energy and costs.

Heraeus Noblelight GmbH with its headquarters in Hanau and with subsidiaries in the USA, Great Britain, France, China and Australia, is one of the technology and market leaders in the production of specialty light sources. In 2009, Heraeus Noblelight had an annual turnover of 71.6 Million € and employed 707 people worldwide. The organisation develops, manufactures and markets infrared and ultraviolet emitters for applications in industrial manufacture, environmental protection, medicine and cosmetics, research, development and analytical laboratories.

Heraeus
Heraeus, the precious metals and technology group headquartered in Hanau, Germany, is a global, private company with over 155 years of tradition. Our businesses include precious metals, sensors, biomaterials and medical products, dental products, quartz glass, and specialty light sources. With product revenues of € 2.6 billion and precious metal trading revenues of € 13.6 billion, as well as more than 12,300 employees in over 110 subsidiaries worldwide, Heraeus holds a leading position in its global markets.

For further information please contact:

Reader:
Heraeus Noblelight GmbH
Reinhard-Heraeus-Ring 7
D-63801 Kleinostheim
Tel +49 6181/35-8545, Fax +49 6181/35-16 8545
E-Mail hng-infrared@heraeus.com
Press:
Dr. Marie-Luise Bopp
Heraeus Noblelight GmbH,
Abteilung Marketing/Werbung
Tel +49 6181/35-8547, Fax +49 6181/35-16 8547
E-Mail marie-luise.bopp@heraeus.com

Dr. Marie-Luise Bopp | Heraeus Noblelight GmbH
Further information:
http://www.heraeus-noblelight.com/infrared
http://www.heraeus-noblelight.com

More articles from Trade Fair News:

nachricht Innovative Infrared Emitters Optimize the Manufacture of Vehicle Interior Fittings Using Vacuum Lamination
01.08.2017 | Heraeus Noblelight GmbH

nachricht Bug-proof communication with entangled photons
22.06.2017 | Fraunhofer-Gesellschaft

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>