Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IMHP technology from DuPont can decrease cycle time during the injection moulding of semi-crystalline thermoplastics

18.10.2011
New IMHP technology from DuPont enables significant productivity increases during the injection moulding of semi-crystalline thermoplastics, which, due to their high rate of volume shrinkage during cooling, require longer holding times.

In contrast to standard injection moulding procedure, the required hold pressure is applied within the mould (IMHP = In-Mould Hold Pressure). This means that the plasticising unit can already be withdrawn from the mould at the start of the hold pressure phase and, almost immediately after injection of the material, dosing of the screw can be resumed.


Photo: DuPont
In IMHP technology (In-Mould Hold Pressure) from DuPont, hold pressure is applied using a separate mechanism integrated within the mould during the screw-dosing phase. This parallel arrangement of two injection moulding phases helps can help reduce cycle time. The actual time saving is largely determined by the degree of crystallinity of the processed material and the shot volume.

In other words, the two phases of applying hold pressure and dosing, which would traditionally follow on from each other, can now be carried out simultaneously. As a consequence the cycle time is reduced by the entire dosing time, if this is shorter than the hold pressure time, or, in the reverse case, by the entire hold pressure time. The resulting gain in time and productivity increases with dosage volume. Particularly in the case of large shot volumes or relatively short overall cycle times, the time savings can be up to 30%.

The IMHP process from DuPont offers two different methods - each integrated within the mould - for applying hold pressure and the successive feeding of molten material. As part of the first method, a hydraulically-operated piston, which is integrated in the movable side of the mould, is immersed in a specially provisioned and appropriately-dosed melt cushion. Alternatively, the equivalent melt volume is available on the stationary side of the mould in the hot runner. In this case, the molten material is pressed into the cavity using a needle-valve-like mechanism. Both methods are currently being trialled and refined by DuPont, with a current emphasis on minimising the additional space required.

"We have conducted numerous injection moulding trials with different semi-crystalline thermoplastics grades at our Technical Center in Meyrin, Switzerland, and were able to demonstrate, on the basis of producing standard bars used for tensile testing, the potential efficiency improvements," comments Ernst A. Poppe, European manager for application and processing technology at DuPont Performance Polymers. "IMHP technology proved itself to be particularly beneficial when moulding DuPont™ Delrin® acetal resin, for which - as is the case with all grades of this particular family of thermoplastics - the hold pressure time constitutes a large proportion of its overall cycle time.

Additionally we were able to demonstrate that there were no significant changes in terms of dimensional stability and mechanical properties between standard injection-moulded samples and such produced with IMHP technology. The next step will be for us to work with moulders, hot runner and machinery producers in refining the engineering aspects of the process and thereby ensuring market entry for this time- and cost-saving technology for the moulding of semi-crystalline thermoplastics."

DuPont Performance Polymers is committed to working with customers throughout the world to develop new products, components and systems that help reduce dependence on fossil fuels and protect people and the environment.

With more than 40 manufacturing, development and research centers throughout the world, DuPont Performance Polymers uses the industry’s broadest portfolio of plastics, elastomers, renewably sourced polymers, filaments and high-performance parts and shapes to deliver cost-effective solutions to customers in aerospace, automotive, consumer, electrical, electronic, industrial, sporting goods and other diversified industries.

DuPont (NYSE: DD) has been bringing world-class science and engineering to the global marketplace in the form of innovative products, materials, and services since 1802. The company believes that by collaborating with customers, governments, NGOs, and thought leaders we can help find solutions to such global challenges as providing enough healthy food for people everywhere, decreasing dependence on fossil fuels, and protecting life and the environment. For additional information about DuPont and its commitment to inclusive innovation, please visit www.dupont.com.

The DuPont Oval Logo, DuPont™, The miracles of science™ and all product names denoted with ® are trademarks or registered trademarks of E.I. Du Pont de Nemours and Company or its affiliates.

PP-Fakuma-2011-20

Press contact (UK, Benelux, Scandinavia)
Andrew Wilkins
Tel.: +44 (0)1353 663350
Fax: +44 (0)1353 663350
Email: dupont@plasticspr.co.uk
DuPont press contact
Rémi Daneyrole
Tel.: +41 (0)22 717 54 19
Fax: +41 (0)22 580 22 45

Ursula Herrmann | Konsens Public Relations
Further information:
http://www.dupont.com

More articles from Trade Fair News:

nachricht Bug-proof communication with entangled photons
22.06.2017 | Fraunhofer-Gesellschaft

nachricht LZH at the LASER World of Photonics 2017: Light for Innovation
16.06.2017 | Laser Zentrum Hannover e.V.

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>