Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IAA: Glassy counterfeit protection helps prevent imitations of high-strength spare parts

08.09.2015

At this year's IAA, INM - Leibniz Institute for New Materials will be unveiling methods and materials which can be used to ensure that security markings remain visible for a long time even when parts are dirty or subjected to high stresses. It will present its results in Hall 4.0 at Stand D27.

Visible security features on automotive spare parts represent a seal of quality for manufacturers and consumers. They guarantee that spare parts are original. Whereas for the driver original parts mean a lower risk of an accident, the proof that they are original protects the manufacturer from any claims for compensation which are brought on the basis of counterfeit products.


Glassy counterfeit protection helps prevent imitations of high-strength spare parts

Copyright: INM; free within this press release

In the case of spare parts that are subjected to high stresses, such markings wear off too quickly. At this year's IAA, INM – Leibniz Institute for New Materials will be unveiling methods and materials which can be used to ensure that security markings remain visible for a long time even when parts are dirty or subjected to high stresses. It will present its results in cooperation with automotive.saarland in Hall 4.0 at Stand D27.

Nowadays typical security markers are produced from plastics. Embossing processes are used to embed random structures into these foils in the form of codes which appear as a hologram to the person looking at them. Heavy mechanical stresses and heat lead to scratching, abrasion or charring and thus to the holograms being destroyed or becoming illegible in a short space of time.

The developers from INM use glass-like materials based on silicates for their hologram-like structures. They cure at 500 degrees Celsius and after this they are able to withstand the high stresses mentioned above. Holographic grating structures which are embossed beforehand are preserved during the curing process in spite of their typical size being in the submicrometre range and therefore likewise achieve the level of resistance of the base material.

In addition, the scientists also cover the holograms which are produced with another, glass-like material. This has a significantly deviating refractive index. This means that the marking remains easy to read even in the event of heavy soiling or oily residues. "At the same time, this form of coating makes it harder for such markers to be copied," adds Peter William de Oliveira, head of the Optical Materials program division. The materials presented were particularly suitable for metallic substrates.

In addition to the material basis, the INM also has facilities for mastering and for replicating corresponding structures. This makes it possible to support all development steps from the design of customer-specific features through to the development of production processes.

Your expert at the INM:
Dr. Peter William de Oliveira
INM – Leibniz Institute for New Materials
Head Optical Materials
Head InnovationCenter INM
Phone: +49681-9300-148
peter.oliveira@leibniz-inm.de

INM conducts research and development to create new materials – for today, tomorrow and beyond. Chemists, physicists, biologists, materials scientists and engineers team up to focus on these essential questions: Which material properties are new, how can they be investigated and how can they be tailored for industrial applications in the future? Four research thrusts determine the current developments at INM: New materials for energy application, new concepts for medical surfaces, new surface materials for tribological systems and nano safety and nano bio. Research at INM is performed in three fields: Nanocomposite Technology, Interface Materials, and Bio Interfaces.
INM – Leibniz Institute for New Materials, situated in Saarbrücken, is an internationally leading centre for materials research. It is an institute of the Leibniz Association and has about 210 employees.

Weitere Informationen:

http://www.leibniz-inm.de/en

Dr. Carola Jung | idw - Informationsdienst Wissenschaft

Further reports about: IAA INM Leibniz-Institut Neue Materialien holograms materials processes stresses structures

More articles from Trade Fair News:

nachricht Solar Collectors from Ultra-High Performance Concrete Combine Energy Efficiency and Aesthetics
16.01.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Energy-Efficient Building Operation: Monitoring Platform MONDAS Identifies Energy-Saving Potential
16.01.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>