Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IAA: Glassy counterfeit protection helps prevent imitations of high-strength spare parts

08.09.2015

At this year's IAA, INM - Leibniz Institute for New Materials will be unveiling methods and materials which can be used to ensure that security markings remain visible for a long time even when parts are dirty or subjected to high stresses. It will present its results in Hall 4.0 at Stand D27.

Visible security features on automotive spare parts represent a seal of quality for manufacturers and consumers. They guarantee that spare parts are original. Whereas for the driver original parts mean a lower risk of an accident, the proof that they are original protects the manufacturer from any claims for compensation which are brought on the basis of counterfeit products.


Glassy counterfeit protection helps prevent imitations of high-strength spare parts

Copyright: INM; free within this press release

In the case of spare parts that are subjected to high stresses, such markings wear off too quickly. At this year's IAA, INM – Leibniz Institute for New Materials will be unveiling methods and materials which can be used to ensure that security markings remain visible for a long time even when parts are dirty or subjected to high stresses. It will present its results in cooperation with automotive.saarland in Hall 4.0 at Stand D27.

Nowadays typical security markers are produced from plastics. Embossing processes are used to embed random structures into these foils in the form of codes which appear as a hologram to the person looking at them. Heavy mechanical stresses and heat lead to scratching, abrasion or charring and thus to the holograms being destroyed or becoming illegible in a short space of time.

The developers from INM use glass-like materials based on silicates for their hologram-like structures. They cure at 500 degrees Celsius and after this they are able to withstand the high stresses mentioned above. Holographic grating structures which are embossed beforehand are preserved during the curing process in spite of their typical size being in the submicrometre range and therefore likewise achieve the level of resistance of the base material.

In addition, the scientists also cover the holograms which are produced with another, glass-like material. This has a significantly deviating refractive index. This means that the marking remains easy to read even in the event of heavy soiling or oily residues. "At the same time, this form of coating makes it harder for such markers to be copied," adds Peter William de Oliveira, head of the Optical Materials program division. The materials presented were particularly suitable for metallic substrates.

In addition to the material basis, the INM also has facilities for mastering and for replicating corresponding structures. This makes it possible to support all development steps from the design of customer-specific features through to the development of production processes.

Your expert at the INM:
Dr. Peter William de Oliveira
INM – Leibniz Institute for New Materials
Head Optical Materials
Head InnovationCenter INM
Phone: +49681-9300-148
peter.oliveira@leibniz-inm.de

INM conducts research and development to create new materials – for today, tomorrow and beyond. Chemists, physicists, biologists, materials scientists and engineers team up to focus on these essential questions: Which material properties are new, how can they be investigated and how can they be tailored for industrial applications in the future? Four research thrusts determine the current developments at INM: New materials for energy application, new concepts for medical surfaces, new surface materials for tribological systems and nano safety and nano bio. Research at INM is performed in three fields: Nanocomposite Technology, Interface Materials, and Bio Interfaces.
INM – Leibniz Institute for New Materials, situated in Saarbrücken, is an internationally leading centre for materials research. It is an institute of the Leibniz Association and has about 210 employees.

Weitere Informationen:

http://www.leibniz-inm.de/en

Dr. Carola Jung | idw - Informationsdienst Wissenschaft

Further reports about: IAA INM Leibniz-Institut Neue Materialien holograms materials processes stresses structures

More articles from Trade Fair News:

nachricht High Resolution Laser Structuring of Thin Films at LOPEC 2017
21.03.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Open ecosystem for smart assistance systems
20.03.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>