Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IAA: Glassy counterfeit protection helps prevent imitations of high-strength spare parts

08.09.2015

At this year's IAA, INM - Leibniz Institute for New Materials will be unveiling methods and materials which can be used to ensure that security markings remain visible for a long time even when parts are dirty or subjected to high stresses. It will present its results in Hall 4.0 at Stand D27.

Visible security features on automotive spare parts represent a seal of quality for manufacturers and consumers. They guarantee that spare parts are original. Whereas for the driver original parts mean a lower risk of an accident, the proof that they are original protects the manufacturer from any claims for compensation which are brought on the basis of counterfeit products.


Glassy counterfeit protection helps prevent imitations of high-strength spare parts

Copyright: INM; free within this press release

In the case of spare parts that are subjected to high stresses, such markings wear off too quickly. At this year's IAA, INM – Leibniz Institute for New Materials will be unveiling methods and materials which can be used to ensure that security markings remain visible for a long time even when parts are dirty or subjected to high stresses. It will present its results in cooperation with automotive.saarland in Hall 4.0 at Stand D27.

Nowadays typical security markers are produced from plastics. Embossing processes are used to embed random structures into these foils in the form of codes which appear as a hologram to the person looking at them. Heavy mechanical stresses and heat lead to scratching, abrasion or charring and thus to the holograms being destroyed or becoming illegible in a short space of time.

The developers from INM use glass-like materials based on silicates for their hologram-like structures. They cure at 500 degrees Celsius and after this they are able to withstand the high stresses mentioned above. Holographic grating structures which are embossed beforehand are preserved during the curing process in spite of their typical size being in the submicrometre range and therefore likewise achieve the level of resistance of the base material.

In addition, the scientists also cover the holograms which are produced with another, glass-like material. This has a significantly deviating refractive index. This means that the marking remains easy to read even in the event of heavy soiling or oily residues. "At the same time, this form of coating makes it harder for such markers to be copied," adds Peter William de Oliveira, head of the Optical Materials program division. The materials presented were particularly suitable for metallic substrates.

In addition to the material basis, the INM also has facilities for mastering and for replicating corresponding structures. This makes it possible to support all development steps from the design of customer-specific features through to the development of production processes.

Your expert at the INM:
Dr. Peter William de Oliveira
INM – Leibniz Institute for New Materials
Head Optical Materials
Head InnovationCenter INM
Phone: +49681-9300-148
peter.oliveira@leibniz-inm.de

INM conducts research and development to create new materials – for today, tomorrow and beyond. Chemists, physicists, biologists, materials scientists and engineers team up to focus on these essential questions: Which material properties are new, how can they be investigated and how can they be tailored for industrial applications in the future? Four research thrusts determine the current developments at INM: New materials for energy application, new concepts for medical surfaces, new surface materials for tribological systems and nano safety and nano bio. Research at INM is performed in three fields: Nanocomposite Technology, Interface Materials, and Bio Interfaces.
INM – Leibniz Institute for New Materials, situated in Saarbrücken, is an internationally leading centre for materials research. It is an institute of the Leibniz Association and has about 210 employees.

Weitere Informationen:

http://www.leibniz-inm.de/en

Dr. Carola Jung | idw - Informationsdienst Wissenschaft

Further reports about: IAA INM Leibniz-Institut Neue Materialien holograms materials processes stresses structures

More articles from Trade Fair News:

nachricht COMPAMED 2016 connected medical devices and people
23.11.2016 | IVAM Fachverband für Mikrotechnik

nachricht Successfully transferring Industrie 4.0 into reality
21.11.2016 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>