Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IAA: Glassy counterfeit protection helps prevent imitations of high-strength spare parts

08.09.2015

At this year's IAA, INM - Leibniz Institute for New Materials will be unveiling methods and materials which can be used to ensure that security markings remain visible for a long time even when parts are dirty or subjected to high stresses. It will present its results in Hall 4.0 at Stand D27.

Visible security features on automotive spare parts represent a seal of quality for manufacturers and consumers. They guarantee that spare parts are original. Whereas for the driver original parts mean a lower risk of an accident, the proof that they are original protects the manufacturer from any claims for compensation which are brought on the basis of counterfeit products.


Glassy counterfeit protection helps prevent imitations of high-strength spare parts

Copyright: INM; free within this press release

In the case of spare parts that are subjected to high stresses, such markings wear off too quickly. At this year's IAA, INM – Leibniz Institute for New Materials will be unveiling methods and materials which can be used to ensure that security markings remain visible for a long time even when parts are dirty or subjected to high stresses. It will present its results in cooperation with automotive.saarland in Hall 4.0 at Stand D27.

Nowadays typical security markers are produced from plastics. Embossing processes are used to embed random structures into these foils in the form of codes which appear as a hologram to the person looking at them. Heavy mechanical stresses and heat lead to scratching, abrasion or charring and thus to the holograms being destroyed or becoming illegible in a short space of time.

The developers from INM use glass-like materials based on silicates for their hologram-like structures. They cure at 500 degrees Celsius and after this they are able to withstand the high stresses mentioned above. Holographic grating structures which are embossed beforehand are preserved during the curing process in spite of their typical size being in the submicrometre range and therefore likewise achieve the level of resistance of the base material.

In addition, the scientists also cover the holograms which are produced with another, glass-like material. This has a significantly deviating refractive index. This means that the marking remains easy to read even in the event of heavy soiling or oily residues. "At the same time, this form of coating makes it harder for such markers to be copied," adds Peter William de Oliveira, head of the Optical Materials program division. The materials presented were particularly suitable for metallic substrates.

In addition to the material basis, the INM also has facilities for mastering and for replicating corresponding structures. This makes it possible to support all development steps from the design of customer-specific features through to the development of production processes.

Your expert at the INM:
Dr. Peter William de Oliveira
INM – Leibniz Institute for New Materials
Head Optical Materials
Head InnovationCenter INM
Phone: +49681-9300-148
peter.oliveira@leibniz-inm.de

INM conducts research and development to create new materials – for today, tomorrow and beyond. Chemists, physicists, biologists, materials scientists and engineers team up to focus on these essential questions: Which material properties are new, how can they be investigated and how can they be tailored for industrial applications in the future? Four research thrusts determine the current developments at INM: New materials for energy application, new concepts for medical surfaces, new surface materials for tribological systems and nano safety and nano bio. Research at INM is performed in three fields: Nanocomposite Technology, Interface Materials, and Bio Interfaces.
INM – Leibniz Institute for New Materials, situated in Saarbrücken, is an internationally leading centre for materials research. It is an institute of the Leibniz Association and has about 210 employees.

Weitere Informationen:

http://www.leibniz-inm.de/en

Dr. Carola Jung | idw - Informationsdienst Wissenschaft

Further reports about: IAA INM Leibniz-Institut Neue Materialien holograms materials processes stresses structures

More articles from Trade Fair News:

nachricht Bug-proof communication with entangled photons
22.06.2017 | Fraunhofer-Gesellschaft

nachricht LZH at the LASER World of Photonics 2017: Light for Innovation
16.06.2017 | Laser Zentrum Hannover e.V.

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>