Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hannover Messe 2015: Saving energy with smart façades

01.04.2015

Glass-fronted office buildings are some of the biggest energy consumers, and regulating their temperature is a big job. Now a façade element developed by Fraunhofer researchers and designers for glass fronts is to reduce energy consumption by harnessing solar thermal energy. A demonstrator version will be on display at Hannover Messe.

In Germany, buildings account for almost 40 percent of all energy usage. Heating, cooling and ventilating homes, offices and public spaces is expensive – and offices with huge glass façades are one of the worst offenders in terms of energy wastage.


The façade element operates using integrated shape-memory alloys and so doesn’t require an external power source.

© Bára Finnsdóttir | Weißensee School of Art Berlin

In the summer, these buildings begin to resemble giant greenhouses that take an enormous amount of effort to cool, while in winter heating requirements shoot up because of insufficient heat insulation for the glass surfaces.

In a bid to cut energy consumption, researchers from the Fraunhofer Institute for Machine Tools and Forming Technology IWU in Dresden have teamed up with the Department of Textile and Surface Design at Weissensee School of Art in Berlin to develop façade components that respond autonomously to sunlight and its thermal energy.

A thermally reactive fabric blind for glass façades

“We don’t need any power since we can rely solely on thermal energy to control the façade element,” says André Bucht, researcher and department head at Fraunhofer IWU. “The challenge in this project was how to bring together innovative technology and design,” adds Prof. Christiane Sauer from the Weissensee School of Art. “Having designers and scientists work together is the key to pioneering concepts for smart building envelopes.”

The demonstrator is based on a concept by design student Bára Finnsdottir, and consists of a matrix of 72 individual fabric components shaped like flowers. Each textile module has shape-memory actuators integrated into it; thin 80-millimeter-long wires of nickel-titanium alloy that remember their original shape when exposed to heat. Should the façade heat up due to the sunlight falling upon it, the wires are activated and noiselessly contract to open the textile components.

The exposed surface of the façade is covered and sunlight can no longer penetrate into the room. As soon as the sun disappears behind a cloud, the components close again so that the façade is transparent once more. The effect is thanks to a special lattice arrangement in the material. “When you bend the wire, it keeps that shape. Then when you expose it to heat, it remembers the shape it had originally and returns to that position. Picture the façade element as a sort of membrane that adapts to weather conditions throughout each day and during the various seasons of the year, providing the ideal amount of shade however strong the sun,” says Bucht.

Designed for large expanses of glass, the sun shield can be attached either on the outer layer of glass or in the space inbetween in the case of multi-layer façades. The innovative structure is easy to retrofit and comes with a range of design options, allowing you to choose the pattern, shape and color of the individual components.

“For instance, you might want to replace the circular design with triangles or a honeycomb arrangement. You can also control the level of sun exposure for individual sections of the façade – just the top left area, for instance. What’s more, the membrane even fits on curved areas of glass. We’ve reached the point where the design has become independent of the shape of the building,” says the researcher. Bucht and his team will be presenting the wealth of design options at Hannover Messe. Visit them in Hall 2, Booth C22 from April 13-17 to see the demonstrator in action. Visitors will be able to actively control the façade using a tablet app specially designed for the purpose.

In the next phase of the project, the researchers want to collaborate with industry partners to develop a range of prototypes for private and office buildings, with the intention of testing them long-term on a detached house and on buildings at the institute. “One priority will be to design fabric elements that are stable enough to withstand any weather,” says Bucht of the work ahead. The plan is to have versions for new builds as well as variants suitable for retrofitting onto existing buildings. The goal is for the systems to be ready for market launch by mid-2017.

But the researchers’ ideas for the façade of the future don’t end there: future plans include climate functions for the façade element, for instance variable heat insulation. “It might be possible to store solar thermal energy and then release it when needed to heat the interior, for instance at night. Another idea is to coat the flower fabric components with malleable, organic solar cells in order to generate electricity that can be used within the building.”

Hendrik Schneider | Fraunhofer Research News
Further information:
http://www.fraunhofer.de/en/press/research-news/2015/april/saving-energy-with-smart-facades.html

More articles from Trade Fair News:

nachricht “Laser Technology Live” at the AKL’18 International Laser Technology Congress in Aachen
23.02.2018 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Empa shows "Gas station of the future"
23.02.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>