Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Functional films for the displays of the future

22.05.2013
Frauhofer FEP will present a novel roll-to-roll manufacturing process for high-barriers and functional films for flexible displays at the SID DisplayWeek 2013 in Vancouver – the International showcase for the Display Industry.

Displays that are flexible and paper thin at the same time?! What might still seem like science fiction will be a major topic at the SID Display Week 2013 that currently takes place in Vancouver in Canada.


Flexible OLED from Fraunhofer COMEDD encapsulated on both sides with high barrier films of Fraunhofer POLO.

High manufacturing cost and a short lifetime are still a major obstacle on the path towards commercial breakthrough of large-area and flexible OLED displays, roll-up e-paper and/or flexible luminous wallpaper. One reason for the high cost is the lack of cost-efficient and reliably large-area processes for flexible encapsulation of such devices.

But now, - at the SID Display Week - the Fraunhofer Institute for Electron Beam and Plasma Technology in Dresden presents a cost-effective roll-to-roll process to deposit ultra-high-barrier and display-adapted functional layers, which will make flexible components longer-living, more durable and cost-effective.

High-barrier films increase the lifespans of flexible electronic systems

The main reason why flexible electronics have a limited time of operation (lifetime) is because the active materials inside the devices are very sensitive against degradation from reaction with omnipresent moisture and oxygen. For instance, a flexible electronic system with the hypothetical size of a football field would not be able to tolerate more than a single drop of moisture ingress in one month. Normal polymer films, on the other hand, allow the diffusion of an entire tanker load of water vapour. Scientists at the Fraunhofer FEP are developing vacuum processes that will be able to productively enhance large polymer films with so-called high-barrier layers that eventually provide sufficient protection of flexible electronics against moisture.
In his presentation on 22 May 2013 (Session 29: Flexible Barriers and Substrate, 10:40 am), Dr. John Fahlteich, Senior Scientist at Fraunhofer FEP, will introduce a high-barrier coating with extremely low water vapour- and oxygen-permeability. With the help of a multi-layer system made from ORMOCER® hybrid-polymer and sputtered zinc-tin-oxide (ZTO) or aluminium oxide (Al2O3) layers water-vapour permeabilities of less than 8 x 10-5 g / (m2d) can be achieved at room temperature. The layer system, which was developed in cooperation with the Fraunhofer ISC in Würzburg (ORMOCER® development) and Fraunhofer IVV in Freising (ORMOCER® application), is currently one of the systems produced in a roll-to-roll process with the lowest water-vapor permeability properties in the world.

Low-cost roll-to-roll processes on a pilot scale

Dr. Fahlteich adds: „Low water-vapour permeation is one thing. But what is also special is the fact that we have been able to use roll-to-roll processes to apply the layers in a highly productive and favourable manner. Films of 400 millimetres width and up to 500 metres in length with reproducibly low water vapor permeation rates have already been coated on a pilot scale. The process is ready for up-scaling to industrial production.“ In addition to the applications for large, flexible displays, flexible lighting and flexible e-paper, the barrier layers may also be employed on organic transistors and organic solar cells.
Dr. Fahlteich’s presentation will finally demonstrate the application-specific enhancements of the technology by integration of multiple functionalities such as adaptation of the product‘s optical properties or addition of transparent electrodes to the high-barrier film.

Press contact: Annett Arnold
Fraunhofer-Institut für Elektronenstrahl- und Plasmatechnik FEP | Phone +49 351 2586 452 | Annett.Arnold@fep.fraunhofer.de

Winterbergstraße 28 | 01277 Dresden | Gemany |

Annett Arnold | Fraunhofer-Institut
Further information:
http://www.fep.fraunhofer.de
http://www.fep.fraunhofer.de/en/events/sid-2013.html

More articles from Trade Fair News:

nachricht High Resolution Laser Structuring of Thin Films at LOPEC 2017
21.03.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Open ecosystem for smart assistance systems
20.03.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>