Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fraunhofer FEP presents new vacuum coating processes at SVC TechCon 2013, USA

17.04.2013
Fraunhofer FEP will introduce newest developments in vacuum coating technology at the international vacuum conference SVC TechCon 2013 on 22 – 24 April 2013.
The Fraunhofer Institute for Electron Beam and Plasma Technology FEP will present from 22 – 24 April 2013 in Providence, Rhode Island, USA, new and highly efficient processes for coating of large areas, such as arcPECVD (hollow cathode arc PECVD), plasma-activated high-rate evaporation using a dual crucible and the sputtering of Indium-free transparent conductive coatings. All three technologies are ready for industrial utilization.

Fraunhofer FEP in recent years advanced the deposition of niobium-doped titanium oxide layers as an Indium-free alternative for transparent conductive electrodes towards an industrially feasible and cost-efficient process. Thus, the glass refinement can be applied in a stable and reproducible process onto large-area surfaces. Dr. Manuela Junghähnel, Senior Scientist and expert for TCO coatings at Fraunhofer FEP, is going to display the properties of niobium-doped titanium oxide layers and features of the new process for glass refinement in her presentation on April 22.

Furthermore, Fraunhofer FEP has developed the arcPECVD process, a roll-to-roll low-pressure technology with very high coating rates, which can be combined easily with other vacuum processes in one web coater due to the low working pressure. Achieving a very good productivity of over 2000 nm∙m/min, barrier layer systems with an extremely high barrier property can be obtained in one pass. However, also other layers, such as siliceous interlayers for reducing layer tension in optical layer stacks have been already realized. In his presentation on April 24, Dr. Steffen Günther, specialist for PECVD processes at Fraunhofer FEP, will go into more detail about the arcPECVD process.

Introducing the dual crucible for the plasma-activated high-rate deposition Fraunhofer FEP succeeded in developing a powerful plasma process with long-term stability for coating relatively thick layers of high melting point materials in an economical way. Dr. Bert Scheffel, Scientist at Fraunhofer FEP, will discuss the benefits of the technology in his presentation on April 22.
The scientists will be glad to answer questions on April 23 – 24 at the booth no. 220 of Fraunhofer FEP. Information and exhibits regarding further surface refinement technologies of Fraunhofer FEP will be as well available at the booth.

Press contact: Annett Arnold
Fraunhofer-Institut für Elektronenstrahl- und Plasmatechnik FEP | Phone +49 351 2586 452 | Annett.Arnold@fep.fraunhofer.de

Winterbergstraße 28 | 01277 Dresden | Gemany | www.fep.fraunhofer.de

Annett Arnold | Fraunhofer-Institut
Further information:
http://www.fep.fraunhofer.de
http://www.svc.org

More articles from Trade Fair News:

nachricht High Resolution Laser Structuring of Thin Films at LOPEC 2017
21.03.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Open ecosystem for smart assistance systems
20.03.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>