Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fraunhofer FEP presents novel, indium-free, transparent conducting Electrodes in Chicago

06.04.2011
The Fraunhofer FEP will present transparent conducting layers based on titanium oxide at the international trade fair on vacuum coating SVC 2011 in Chicago.

At the international trade fair SVC (Society of Vacuum Coaters) on 19-20 April 2011 the Fraunhofer FEP will present for the first time a large-scale transparent conducting oxide (TCO) layer based on titanium dioxide, containing small amounts of niobium. The layer has similar conductivity and transparency to other indium-free materials, but has greater resistance to chemicals and to temperatures up to 550°C.


Glass plate with a transparent conducting layer based on titanium dioxide. The electrode material of the future? © Fraunhofer FEP

Transparent conducting layers are important components of flat displays and solar cells. Their function is to conduct electricity with low loss, for example the electricity generated from sunlight in a solar cell must be transferred to the electrical circuit. The conducting coating must not, however, shade the solar cell. The primary requirements on the coating are therefore high optical transparency and electrical conductivity.

The Fraunhofer FEP is able to apply such layers to glass on an industrial scale. Although the Fraunhofer FEP researchers have not yet achieved the excellent properties of conventional indium-tin-oxide coatings (ITO) with their layers, their materials are indium-free. Dr. Torsten Kopte, leader of the »Plasma I« group at the Fraunhofer FEP explains the importance of this: »Indium is becoming ever scarcer, and is mainly mined in China. For European companies it is important not to be dependent on Chinese raw materials. We are developing indium-free TCO materials in order to stay competitive and independent in electronics industry.« Unlike indium, titanium dioxide, which is also used in opaque white paint and toothpaste,

is a readily available raw material. Titanium dioxide, with its high refractive index, is a tried and tested material for optical applications and is used for coating heat-insulating glass and for anti-reflective coatings for spectacles.

Manuela Junghähnel is developing conducting layers at the Fraunhofer FEP and is evaluating the research results: »For applications such as light outcoupling for blue LEDs, our titanium dioxide layer technology is already very suitable due to its refractive index. The high refractive index of the layers may also be advantageous in solar cells for improved light trapping. We can however customize the layers, meaning we have a certain freedom to tailor properties such as the optical transparency, refractive index, and electrical conductivity to the specific application.«

For further information please visit us at the SVC 2011 trade fair in Chicago at stand no. 1334.

There you will be able to measure the resistance of the layers yourself!

Scientific contact:
Dr. Marita Mehlstäubl
Fraunhofer Institute for Electron Beam and Plasma Technology FEP
Phone +49 351 2586-214
marita.mehlstaeubl@fep.fraunhofer.de
Press contact:
Annett Arnold
Fraunhofer Institute for Electron Beam and Plasma Technology FEP
Phone +49 351 2586-452
annett.arnold@fep.fraunhofer.de

Annett Arnold | Fraunhofer-Institut
Further information:
http://www.fep.fraunhofer.de/enu/

More articles from Trade Fair News:

nachricht Paradigm shift in Paris: Encouraging an holistic view of laser machining
10.01.2018 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Diamond Lenses and Space Lasers at Photonics West
15.12.2017 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>