Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fraunhofer FEP presents novel, indium-free, transparent conducting Electrodes in Chicago

06.04.2011
The Fraunhofer FEP will present transparent conducting layers based on titanium oxide at the international trade fair on vacuum coating SVC 2011 in Chicago.

At the international trade fair SVC (Society of Vacuum Coaters) on 19-20 April 2011 the Fraunhofer FEP will present for the first time a large-scale transparent conducting oxide (TCO) layer based on titanium dioxide, containing small amounts of niobium. The layer has similar conductivity and transparency to other indium-free materials, but has greater resistance to chemicals and to temperatures up to 550°C.


Glass plate with a transparent conducting layer based on titanium dioxide. The electrode material of the future? © Fraunhofer FEP

Transparent conducting layers are important components of flat displays and solar cells. Their function is to conduct electricity with low loss, for example the electricity generated from sunlight in a solar cell must be transferred to the electrical circuit. The conducting coating must not, however, shade the solar cell. The primary requirements on the coating are therefore high optical transparency and electrical conductivity.

The Fraunhofer FEP is able to apply such layers to glass on an industrial scale. Although the Fraunhofer FEP researchers have not yet achieved the excellent properties of conventional indium-tin-oxide coatings (ITO) with their layers, their materials are indium-free. Dr. Torsten Kopte, leader of the »Plasma I« group at the Fraunhofer FEP explains the importance of this: »Indium is becoming ever scarcer, and is mainly mined in China. For European companies it is important not to be dependent on Chinese raw materials. We are developing indium-free TCO materials in order to stay competitive and independent in electronics industry.« Unlike indium, titanium dioxide, which is also used in opaque white paint and toothpaste,

is a readily available raw material. Titanium dioxide, with its high refractive index, is a tried and tested material for optical applications and is used for coating heat-insulating glass and for anti-reflective coatings for spectacles.

Manuela Junghähnel is developing conducting layers at the Fraunhofer FEP and is evaluating the research results: »For applications such as light outcoupling for blue LEDs, our titanium dioxide layer technology is already very suitable due to its refractive index. The high refractive index of the layers may also be advantageous in solar cells for improved light trapping. We can however customize the layers, meaning we have a certain freedom to tailor properties such as the optical transparency, refractive index, and electrical conductivity to the specific application.«

For further information please visit us at the SVC 2011 trade fair in Chicago at stand no. 1334.

There you will be able to measure the resistance of the layers yourself!

Scientific contact:
Dr. Marita Mehlstäubl
Fraunhofer Institute for Electron Beam and Plasma Technology FEP
Phone +49 351 2586-214
marita.mehlstaeubl@fep.fraunhofer.de
Press contact:
Annett Arnold
Fraunhofer Institute for Electron Beam and Plasma Technology FEP
Phone +49 351 2586-452
annett.arnold@fep.fraunhofer.de

Annett Arnold | Fraunhofer-Institut
Further information:
http://www.fep.fraunhofer.de/enu/

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Researchers devise microreactor to study formation of methane hydrate

23.08.2017 | Materials Sciences

ShAPEing the future of magnesium car parts

23.08.2017 | Automotive Engineering

New insights into the world of trypanosomes

23.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>