Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fraunhofer FEP presents functional films for printed electronics at trade fair in Munich

06.06.2013
The Fraunhofer FEP will be presenting vacuum technologies for the production of functional films for organic and printed electronics at the international trade fair and conference LOPE-C in Munich between 11 and 13 June 2013.

Printed electronics, for example in solar cells, sensors or displays, are becoming increasingly popular on the mass market. Apart from the possibility of new functions and designs, productive deposition methods and the flexible materials used promise significant reductions in production costs.


Flexible OLED of Fraunhofer COMEDD, built upon and encapsulated with functional films of Fraunhofer POLO

The short lifetime of the products has often been an obstacle to their widespread commercialization up to now. The main reason for this is the high sensitivity of the electronic functional materials inside the devices, which can be damaged by water vapor and oxygen.

The Fraunhofer Institute for Electron Beam and Plasma Technology FEP in Dresden develops vacuum processes to productively seal polymer films roll-to-roll with so-called high-barrier and functional layers. A standard polymer film would allow large amounts of water vapor and oxygen to pass through. Permeation barrier layers prevent gas diffusion and thus protect the active, organic materials. In addition to the barrier function, the film can also be enhanced through further, application-related functional layers. For example, the optical properties of the film can be adapted or transparent electrodes can be added on top of a barrier stack.

Dr. John Fahlteich, an expert for high-barrier films at the Fraunhofer FEP, will present productive roll-to-roll coating processes for films with extremely good barrier functions on 12 June at the LOPE-C in Munich. With the help of a multi-layer system made from sputtered zinc-tin-oxide (ZTO) layers and ORMOCER® hybrid-polymer, water-vapor permeabilities of less than 8 • 10-5 g / (m2d) can be achieved at room temperature. This corresponds to roughly one drop of water seeping through an area of the size of a football pitch in one month. The layer system, which was developed within the Fraunhofer Polymer Surfaces Alliance (POLO) in cooperation with the Fraunhofer ISC (ORMOCER® development) and Fraunhofer IVV (ORMOCER® application), is currently one of the systems produced in a roll-to-roll process with the lowest water-vapor permeability properties in the world.

Dr. Fahlteich will be available for discussion during the LOPE-C between 12 and 13 June 2013 on the joint booth of Organic Electronics Saxony (OES)(booth 112 / hall B). Examples of the far-reaching competence of Saxony as a location for organic electronics will also be on display on the booth. Dr. Fahlteich also refers to the newly founded cluster »FLEET Dresden: Flexible Electronics Encapsulation Technologies«: »This cluster represents the Saxon competence in high-barrier systems and provides joint services dealing with the encapsulation of organic electronics. There is a lot of organic electronics know-how in the region of Dresden. Our cluster gives us the opportunity to manufacture and test flexible electronic components together with partners from industry and research, from feasibility studies right through to pilot production.«

Annett Arnold | Fraunhofer-Institut
Further information:
http://www.fep.fraunhofer.de
http://www.encapsulation.fraunhofer.de

More articles from Trade Fair News:

nachricht Paradigm shift in Paris: Encouraging an holistic view of laser machining
10.01.2018 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Diamond Lenses and Space Lasers at Photonics West
15.12.2017 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>